Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2023 | Story Leonie Bolleurs | Photo Supplied
iKudu Coil Chevon Slammbee
Chevon Slambee says the COIL approach connects students and educators from different cultural backgrounds through online platforms, allowing participants to engage in cross-cultural learning and collaboration.

Internationalisation of the curriculum has been mandatory for institutions of higher education since 2020, according to the National Policy Framework for the Internationalisation of Higher Education in South Africa.

The iKudu project, an Erasmus+Capacity-Building in Higher Education (CBHE) co-funded project, which aims, among others, for universities to include internationalisation and decolonisation dimensions to transform their curricula, recently published the document: Considerations for enabling guidelines, strategies, and policies for internationalised curriculum renewal for universities with a focus on the diverse South African contexts. 

The University of the Free State (UFS) Office for International Affairs (OIA) played a key role in the publication of this document.

In his editorial of the document, Dr Cornelius Hagenmeier, Director of the OIA, states that in the spirit of the iKudu values – which include Ubuntu, trust, and equality – the project stakeholders have developed a document that will serve as a repository of ideas from which all consortium member universities can intelligently borrow when developing their institutional guidelines, strategies, and policies for curriculum renewal, Collaborative Online International Learning (COIL), or other forms of virtual exchange.

He says they are publishing this document to make the ideas available to the broader higher education community, in the hope that they will contribute to further debate on internationalised curriculum renewal processes.

The iKudu project is one of the few major EU-funded capacity-building projects coordinated by a South African university.

UFS coordinates iKudu

According to Chevon Slambee, iKudu Project Manager in the UFS OIA, the consideration document serves as a guiding document for all universities, but specifically focuses on South African universities, taking into account the unique and diverse contexts of South Africa’s higher education landscape and how these contexts influence the curriculum renewal processes.

Slambee explains that the COIL approach connects students and educators from different cultural backgrounds through online platforms, allowing participants to engage in cross-cultural learning and collaboration within the existing curriculum. 

Through joint projects, shared courses, and virtual exchanges, it aims to foster intercultural competence, global awareness, and mutual understanding among students. Moreover, the initiative creates inclusive opportunities for all students who take part in COIL, as the inequalities due to financial resources are factored out. “It expands the classroom beyond classroom borders, and grants students the opportunity to engage in a digital international world,” says Slambee. 

The five participating South African universities – the UFS, Durban University of Technology, University of Limpopo, University of Venda, and the Central University of Technology – together with the five European universities – the University of Siena (Italy), Coventry University (England), The Hague University of Applied Sciences (The Netherlands), Amsterdam University of Applied Sciences (The Netherlands), and the University of Antwerp (Belgium) – have implemented 51 of their target of 55 COIL programmes, with almost 10 months remaining in the project. “For us, this is a milestone in the iKudu journey,” says Slambee. 

Sharing COIL experiences

One of the UFS lecturers who completed a COIL project is Prof Mariette Reyneke, Associate Professor in the UFS Department of Public Law.

Prof Reyneke recently completed her second COIL experience, this time with Prof Alessandra Viviani from the University of Siena. She says one of the best aspects of this initiative is giving our students the opportunity to broaden their horizons by exposing them to peers from a different country and culture. “Moreover, one also gets to expose students from developed countries to the realities and challenges of a developing country,” she adds.

“Through this initiative, we also get the chance to teach South African students that they have valuable contributions to offer the world. In some instances, our legal solutions to problems are fascinating and enriching for international students. Our theory and implementation of human rights are also sometimes more liberal than what students from Europe experience in their own countries,” says Prof Reyneke, who believes that COIL fosters an innovative and enriching experience for students, while also enhancing academic networks.

“It was very satisfying for me to realise that the students not only enjoyed the experience, but also found it beneficial for their personal growth,” she remarks.

Moving forward, Slambee says the OIA is working closely with the Centre for Teaching and Learning and is in the process of establishing a COIL/virtual engagement hub for the university. Furthermore, the Curriculum Internationalisation Project (CIP) has been approved and is being piloted in specific departments and faculties. For more information about the CIP, contact Prof Lynette Jacobs, Slambee, or Nooreen Adam from the OIA.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept