Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2023 | Story Amanda Tongha | Photo Samkelo Fetile
Enhancing students’ linguistic abilities
Language teaching professionals from Southern Africa attended a two-day symposium on foreign language acquisition practice on the UFS Bloemfontein Campus.

Language teaching professionals from across Southern Africa recently gathered at the University of the Free State (UFS) to discuss the need for benchmarking and standardising teaching and assessment practices. 

With the aim of empowering lecturers and researchers responsible for language acquisition and delivering competent students to ensure their employability globally, the educators addressed the challenges of language acquisition in the region. It was the first time that educators from different language disciplines, including Dutch, German, French, Afrikaans, isiZulu, Sesotho, and Sign Language, met to discuss standardisation and best practices in teaching and assessment.

The symposium, which was hosted on the Bloemfontein Campus on 8 and 9 June 2023, brought together educators from the UFS, North-West University, University of Cape Town, University of the Western Cape, University of KwaZulu-Natal, University of Pretoria, Rhodes University, University of South Africa, Stellenbosch University, University of the Witwatersrand, University of Limpopo, and Sol Plaatje University. They were joined by participants from the University of Namibia and the National University of Lesotho, providing a regional perspective. 

Standardising language acquisition in Southern Africa 

Prof Angelique van Niekerk, Head of the Department of Afrikaans and Dutch, German and French, says the meeting marked a movement towards delivering competent students in order to increase their employability in languages such as Dutch, German, French, Afrikaans, isiZulu, Sesotho, and Sign Language. 

“It is probably the first time that the different language disciplines and colleagues from disciplines involved in language acquisition in Southern Africa have met to discuss the need for benchmarking and standardising.” 

“The symposium was not on multilingualism per se, but as language scholars, we support multilingualism. Social cohesion is affected positively if people and their culture and language are accepted and thus used.”

Talking about the need for a reference framework for benchmarking languages, Dr Michelle Joubert, Subject Specialist in the UFS Centre for Teaching and Learning, told delegates in her keynote address that a coordinated system provides a basis for the mutual recognition of language qualifications. 

“Our aim is to develop a framework of standards for indigenous and foreign languages to reflect the political and social realities of a multilingual and multicultural South Africa, which aims to form a single South African education, employment, and residential space for its citizens.”

In another keynote address, Dr Carina Grobler, Subject Chair and Lecturer in French at the North-West University, highlighted effective assessment tools to enhance students’ ability to learn additional languages. 

Prof Van Niekerk says many new initiatives, such as the sharing of resources on centralised platforms, were some of the gains following the symposium; a follow-up event is planned for 2024. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept