Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Bahta
For the past three years, Prof Yonas Bahta has studied the resilience of smallholder livestock farmers in agricultural drought, and the competitiveness of agri-food commodities.

The agricultural sector is marked by farmers’ daily struggles, including price hikes, climate change effects, and pest and disease outbreaks.

Prof Yonas T Bahta, Associate Professor and astute National Research Foundation (NRF) C2-rated researcher in the Department of Agricultural Economics at the University of the Free State (UFS), found that smallholder farmers who received drought relief support saw an improvement in their welfare. The study also found that economic capital, social capital, human capital, and natural capital substantially affected the welfare of smallholder farmers.

Agricultural drought

These findings came from the study, titled: The resilience of households to agricultural drought in the Northern Cape province of South Africa. Prof Bahta’s aim with this study was threefold – to assess household resilience to agricultural drought among smallholder livestock farmers, to evaluate the welfare of smallholder farming households affected by agricultural drought, and to identify factors influencing agricultural drought resilience and food insecurity among smallholder livestock farmers.

During his investigation, he found that only 9% of the smallholder livestock farmers were resilient to agricultural drought. According to him, farming households with access to credit, farmers who received assistance from the government (such as training and feed) during drought, and farmers who are part of a cooperative proved to be more resilient to agricultural drought.

When it comes to food security, he discovered that assets, social safety nets, and indicators of adaptive capacity had a positive influence on households' ability to withstand food insecurity. Alternatively, climate change indicators negatively impacted households’ resilience to food insecurity.

For the past three years, he has studied the resilience of smallholder livestock farmers in agricultural drought. He believes that resilience – the ability to bounce back from adversities – is crucial.

According to him, both the smallholder livestock sector (farmers) and the agrifood industry need to develop resilience to effectively cope with and recover from agricultural drought, macroeconomic stability (inflation), competitiveness, productivity, and other related factors.

Competitiveness of agri-food commodities

Prof Bahta also launched investigations into the competitiveness of agri-food commodities in South Africa as well as Namibia.

The studies were titled: Competitiveness of Namibia’s Agrifood Commodities: Implications for Food Security and Competitiveness of South Africa’s Agrifood Commodities.

In these studies, he respectively looked at the competitiveness of South Africa’s and Namibia’s agrifood products, the factors that influence it, and its implication for food security.

In both countries, he discovered a combination of comparative advantage and disadvantage.

“South Africa and Namibia exhibited a trade structure that was less concentrated and not dependant on international trade in the agri-food industry, having minimal impact on Namibia's food security. The productivity of agriculture and GDP per capita positively influenced the comparative advantage of South Africa, whereas land productivity and GDP per capita influenced the degree of food insecurity in Namibia,” explains Prof Bahta the main research findings.

Research outputs

The study on the resilience of smallholder livestock farmers was supported by funding from the National Research Foundation. To explore the competitiveness of agri-food commodities, Prof Bahta collaborated with the Namibia University of Science and Technology (NUST), benefiting from their strong existing academic relationship. The UFS Office for International Affairs played a key role in facilitating this study, with research partnerships existing between the universities of both countries.

According to Prof Bahta, the findings of these two studies have resulted in the publication of more than 13 articles in journals ranking in the highest (Q1) and second highest categories (Q2) in the specific field. A paper will also be presented at the upcoming International Food and Agribusiness Management Association (IFAMA) international conference in New Zealand from 17 to 20 June 2023.

Furthermore, five popular articles on the main findings of the studies (written in non-technical language) were also published on these topics, focusing on the farmers and policy makers (as a policy brief and popular) as the target audience. These articles looked at, among others, the impact of policy intervention on food insecurity in times of shock; coping strategies of smallholder livestock farmers during food insecurity shocks; measuring the resilience of female smallholders in South Africa; and farming for success.

This study also resulted in the graduation of three master's students (two with distinction) and three honours students.

Looking ahead, Prof Bahta emphasises the necessity for conducting similar studies targeting both commercial and smallholder farmers, focusing on crops and livestock in various provinces across South Africa. He also feels that connections need to be established with universities besides NUST.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept