Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Bahta
For the past three years, Prof Yonas Bahta has studied the resilience of smallholder livestock farmers in agricultural drought, and the competitiveness of agri-food commodities.

The agricultural sector is marked by farmers’ daily struggles, including price hikes, climate change effects, and pest and disease outbreaks.

Prof Yonas T Bahta, Associate Professor and astute National Research Foundation (NRF) C2-rated researcher in the Department of Agricultural Economics at the University of the Free State (UFS), found that smallholder farmers who received drought relief support saw an improvement in their welfare. The study also found that economic capital, social capital, human capital, and natural capital substantially affected the welfare of smallholder farmers.

Agricultural drought

These findings came from the study, titled: The resilience of households to agricultural drought in the Northern Cape province of South Africa. Prof Bahta’s aim with this study was threefold – to assess household resilience to agricultural drought among smallholder livestock farmers, to evaluate the welfare of smallholder farming households affected by agricultural drought, and to identify factors influencing agricultural drought resilience and food insecurity among smallholder livestock farmers.

During his investigation, he found that only 9% of the smallholder livestock farmers were resilient to agricultural drought. According to him, farming households with access to credit, farmers who received assistance from the government (such as training and feed) during drought, and farmers who are part of a cooperative proved to be more resilient to agricultural drought.

When it comes to food security, he discovered that assets, social safety nets, and indicators of adaptive capacity had a positive influence on households' ability to withstand food insecurity. Alternatively, climate change indicators negatively impacted households’ resilience to food insecurity.

For the past three years, he has studied the resilience of smallholder livestock farmers in agricultural drought. He believes that resilience – the ability to bounce back from adversities – is crucial.

According to him, both the smallholder livestock sector (farmers) and the agrifood industry need to develop resilience to effectively cope with and recover from agricultural drought, macroeconomic stability (inflation), competitiveness, productivity, and other related factors.

Competitiveness of agri-food commodities

Prof Bahta also launched investigations into the competitiveness of agri-food commodities in South Africa as well as Namibia.

The studies were titled: Competitiveness of Namibia’s Agrifood Commodities: Implications for Food Security and Competitiveness of South Africa’s Agrifood Commodities.

In these studies, he respectively looked at the competitiveness of South Africa’s and Namibia’s agrifood products, the factors that influence it, and its implication for food security.

In both countries, he discovered a combination of comparative advantage and disadvantage.

“South Africa and Namibia exhibited a trade structure that was less concentrated and not dependant on international trade in the agri-food industry, having minimal impact on Namibia's food security. The productivity of agriculture and GDP per capita positively influenced the comparative advantage of South Africa, whereas land productivity and GDP per capita influenced the degree of food insecurity in Namibia,” explains Prof Bahta the main research findings.

Research outputs

The study on the resilience of smallholder livestock farmers was supported by funding from the National Research Foundation. To explore the competitiveness of agri-food commodities, Prof Bahta collaborated with the Namibia University of Science and Technology (NUST), benefiting from their strong existing academic relationship. The UFS Office for International Affairs played a key role in facilitating this study, with research partnerships existing between the universities of both countries.

According to Prof Bahta, the findings of these two studies have resulted in the publication of more than 13 articles in journals ranking in the highest (Q1) and second highest categories (Q2) in the specific field. A paper will also be presented at the upcoming International Food and Agribusiness Management Association (IFAMA) international conference in New Zealand from 17 to 20 June 2023.

Furthermore, five popular articles on the main findings of the studies (written in non-technical language) were also published on these topics, focusing on the farmers and policy makers (as a policy brief and popular) as the target audience. These articles looked at, among others, the impact of policy intervention on food insecurity in times of shock; coping strategies of smallholder livestock farmers during food insecurity shocks; measuring the resilience of female smallholders in South Africa; and farming for success.

This study also resulted in the graduation of three master's students (two with distinction) and three honours students.

Looking ahead, Prof Bahta emphasises the necessity for conducting similar studies targeting both commercial and smallholder farmers, focusing on crops and livestock in various provinces across South Africa. He also feels that connections need to be established with universities besides NUST.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept