Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Bahta
For the past three years, Prof Yonas Bahta has studied the resilience of smallholder livestock farmers in agricultural drought, and the competitiveness of agri-food commodities.

The agricultural sector is marked by farmers’ daily struggles, including price hikes, climate change effects, and pest and disease outbreaks.

Prof Yonas T Bahta, Associate Professor and astute National Research Foundation (NRF) C2-rated researcher in the Department of Agricultural Economics at the University of the Free State (UFS), found that smallholder farmers who received drought relief support saw an improvement in their welfare. The study also found that economic capital, social capital, human capital, and natural capital substantially affected the welfare of smallholder farmers.

Agricultural drought

These findings came from the study, titled: The resilience of households to agricultural drought in the Northern Cape province of South Africa. Prof Bahta’s aim with this study was threefold – to assess household resilience to agricultural drought among smallholder livestock farmers, to evaluate the welfare of smallholder farming households affected by agricultural drought, and to identify factors influencing agricultural drought resilience and food insecurity among smallholder livestock farmers.

During his investigation, he found that only 9% of the smallholder livestock farmers were resilient to agricultural drought. According to him, farming households with access to credit, farmers who received assistance from the government (such as training and feed) during drought, and farmers who are part of a cooperative proved to be more resilient to agricultural drought.

When it comes to food security, he discovered that assets, social safety nets, and indicators of adaptive capacity had a positive influence on households' ability to withstand food insecurity. Alternatively, climate change indicators negatively impacted households’ resilience to food insecurity.

For the past three years, he has studied the resilience of smallholder livestock farmers in agricultural drought. He believes that resilience – the ability to bounce back from adversities – is crucial.

According to him, both the smallholder livestock sector (farmers) and the agrifood industry need to develop resilience to effectively cope with and recover from agricultural drought, macroeconomic stability (inflation), competitiveness, productivity, and other related factors.

Competitiveness of agri-food commodities

Prof Bahta also launched investigations into the competitiveness of agri-food commodities in South Africa as well as Namibia.

The studies were titled: Competitiveness of Namibia’s Agrifood Commodities: Implications for Food Security and Competitiveness of South Africa’s Agrifood Commodities.

In these studies, he respectively looked at the competitiveness of South Africa’s and Namibia’s agrifood products, the factors that influence it, and its implication for food security.

In both countries, he discovered a combination of comparative advantage and disadvantage.

“South Africa and Namibia exhibited a trade structure that was less concentrated and not dependant on international trade in the agri-food industry, having minimal impact on Namibia's food security. The productivity of agriculture and GDP per capita positively influenced the comparative advantage of South Africa, whereas land productivity and GDP per capita influenced the degree of food insecurity in Namibia,” explains Prof Bahta the main research findings.

Research outputs

The study on the resilience of smallholder livestock farmers was supported by funding from the National Research Foundation. To explore the competitiveness of agri-food commodities, Prof Bahta collaborated with the Namibia University of Science and Technology (NUST), benefiting from their strong existing academic relationship. The UFS Office for International Affairs played a key role in facilitating this study, with research partnerships existing between the universities of both countries.

According to Prof Bahta, the findings of these two studies have resulted in the publication of more than 13 articles in journals ranking in the highest (Q1) and second highest categories (Q2) in the specific field. A paper will also be presented at the upcoming International Food and Agribusiness Management Association (IFAMA) international conference in New Zealand from 17 to 20 June 2023.

Furthermore, five popular articles on the main findings of the studies (written in non-technical language) were also published on these topics, focusing on the farmers and policy makers (as a policy brief and popular) as the target audience. These articles looked at, among others, the impact of policy intervention on food insecurity in times of shock; coping strategies of smallholder livestock farmers during food insecurity shocks; measuring the resilience of female smallholders in South Africa; and farming for success.

This study also resulted in the graduation of three master's students (two with distinction) and three honours students.

Looking ahead, Prof Bahta emphasises the necessity for conducting similar studies targeting both commercial and smallholder farmers, focusing on crops and livestock in various provinces across South Africa. He also feels that connections need to be established with universities besides NUST.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept