Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Bahta
For the past three years, Prof Yonas Bahta has studied the resilience of smallholder livestock farmers in agricultural drought, and the competitiveness of agri-food commodities.

The agricultural sector is marked by farmers’ daily struggles, including price hikes, climate change effects, and pest and disease outbreaks.

Prof Yonas T Bahta, Associate Professor and astute National Research Foundation (NRF) C2-rated researcher in the Department of Agricultural Economics at the University of the Free State (UFS), found that smallholder farmers who received drought relief support saw an improvement in their welfare. The study also found that economic capital, social capital, human capital, and natural capital substantially affected the welfare of smallholder farmers.

Agricultural drought

These findings came from the study, titled: The resilience of households to agricultural drought in the Northern Cape province of South Africa. Prof Bahta’s aim with this study was threefold – to assess household resilience to agricultural drought among smallholder livestock farmers, to evaluate the welfare of smallholder farming households affected by agricultural drought, and to identify factors influencing agricultural drought resilience and food insecurity among smallholder livestock farmers.

During his investigation, he found that only 9% of the smallholder livestock farmers were resilient to agricultural drought. According to him, farming households with access to credit, farmers who received assistance from the government (such as training and feed) during drought, and farmers who are part of a cooperative proved to be more resilient to agricultural drought.

When it comes to food security, he discovered that assets, social safety nets, and indicators of adaptive capacity had a positive influence on households' ability to withstand food insecurity. Alternatively, climate change indicators negatively impacted households’ resilience to food insecurity.

For the past three years, he has studied the resilience of smallholder livestock farmers in agricultural drought. He believes that resilience – the ability to bounce back from adversities – is crucial.

According to him, both the smallholder livestock sector (farmers) and the agrifood industry need to develop resilience to effectively cope with and recover from agricultural drought, macroeconomic stability (inflation), competitiveness, productivity, and other related factors.

Competitiveness of agri-food commodities

Prof Bahta also launched investigations into the competitiveness of agri-food commodities in South Africa as well as Namibia.

The studies were titled: Competitiveness of Namibia’s Agrifood Commodities: Implications for Food Security and Competitiveness of South Africa’s Agrifood Commodities.

In these studies, he respectively looked at the competitiveness of South Africa’s and Namibia’s agrifood products, the factors that influence it, and its implication for food security.

In both countries, he discovered a combination of comparative advantage and disadvantage.

“South Africa and Namibia exhibited a trade structure that was less concentrated and not dependant on international trade in the agri-food industry, having minimal impact on Namibia's food security. The productivity of agriculture and GDP per capita positively influenced the comparative advantage of South Africa, whereas land productivity and GDP per capita influenced the degree of food insecurity in Namibia,” explains Prof Bahta the main research findings.

Research outputs

The study on the resilience of smallholder livestock farmers was supported by funding from the National Research Foundation. To explore the competitiveness of agri-food commodities, Prof Bahta collaborated with the Namibia University of Science and Technology (NUST), benefiting from their strong existing academic relationship. The UFS Office for International Affairs played a key role in facilitating this study, with research partnerships existing between the universities of both countries.

According to Prof Bahta, the findings of these two studies have resulted in the publication of more than 13 articles in journals ranking in the highest (Q1) and second highest categories (Q2) in the specific field. A paper will also be presented at the upcoming International Food and Agribusiness Management Association (IFAMA) international conference in New Zealand from 17 to 20 June 2023.

Furthermore, five popular articles on the main findings of the studies (written in non-technical language) were also published on these topics, focusing on the farmers and policy makers (as a policy brief and popular) as the target audience. These articles looked at, among others, the impact of policy intervention on food insecurity in times of shock; coping strategies of smallholder livestock farmers during food insecurity shocks; measuring the resilience of female smallholders in South Africa; and farming for success.

This study also resulted in the graduation of three master's students (two with distinction) and three honours students.

Looking ahead, Prof Bahta emphasises the necessity for conducting similar studies targeting both commercial and smallholder farmers, focusing on crops and livestock in various provinces across South Africa. He also feels that connections need to be established with universities besides NUST.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept