Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2023 | Story André Damons | Photo Sonia Small
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the research team that is working on various research projects relating to fungi casing yeast.

Fungal infections affect more than one billion people each year, of which more than 150 million cases are severe and life-threatening, causing 1.7 million deaths a year. In South Africa it is estimated that diseases caused by fungal infections total more than three million cases a year. These figures are especially shocking given that prior to 1980, fungal infections were not a major health problem. The WHO has recently published a list of priority pathogens in which fungi are classified in critical, high- and medium- priority groups. Candida species are found in all three levels and Cryptococcus species in critical and medium groups,” says Prof Pohl-Albertyn.

It is for these reasons that researchers in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) are working on various research projects investigating new treatment options beyond the established antifungals. Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the team that is working on various research projects relating to fungi casing yeast.

Multidrug-resistant yeast

One of the yeasts being researched is Candida auris – a multidrug-resistant yeast that can cause severe infections in humans, particularly in people who are hospitalised or have weakened immune systems. C. auris was first identified in 2009 in Japan and has since been reported in over 49 countries.

According to Prof Pohl-Albertyn, C. auris is of concern because it is often resistant to multiple antifungal drugs, making it difficult to treat. In addition, it can survive on surfaces in healthcare settings, which can contribute to its spread between patients, causing outbreaks in hospitals. “Due to its multidrug resistance and potential for transmission, C. auris has been designated by the Centers for Disease Control and Prevention (CDC) as a serious global health threat and listed as the second most critical fungal pathogen in the World Health Organisation (WHO) fungal critical priority group.

C. auris possesses virulence factors such as increased thermotolerance, high salinity tolerance, biofilm formation, and extra cellular enzyme secretion, which are the major contributing factors to its multidrug resistance profile and virulence. Even though C. auris has a variety of virulence factors that it employs against its human host to develop an infection, its virulence mechanisms remain unclear,” says Prof Pohl-Albertyn.

Therefore, several research projects investigate this pathogenic yeast. All of them started with the development of CRISP-Cas9 gene editing tools for this yeast, in order to be able to delete specific genes in this yeast to study their roles. These tools are also constantly being improved for greater efficiency by students under the supervision of Prof Koos Albertyn. Two current projects deal with the function of specific secreted enzymes in the virulence of C. auris.

Environmental yeast

Another yeast being researched, under the supervision of Prof Olihile Sebolai, is Cryptococcus neoformans, an environmental yeast found in trees and soil contaminated with bird droppings. Moreover, it can be airborne and when inhaled it lodges in the lungs (in alveoli) and can cause primary lung infection, explains Prof Pohl-Albertyn.

Cryptococcus neoformans causes AIDS-defining illnesses in people living with HIV/AIDS. To the point, it was not surprising when the WHO declared it as the first critical fungal pathogen of concern. Dissemination to other organs has been reported where it crosses the epithelium barrier by secreting proteases (a class of enzymes that break down proteins in the host) that compromise the tight junctions between the epithelial cells.

The current projects investigate the interaction between the proteases secreted by C. neoformans and co-infecting viruses, such as SARS-CoV-2 and influenza. The SARS-CoV-2 virus is activated by proteases in the host and proteases also help the influenza virus to enter and infect the host cells. Since the host proteases are similar to those secreted by C. neoformans, these projects are focused on determining if the yeast proteases can also help the viruses to cause infection. This project is also extended to study Candida albicans proteases as this is also a common co-infecting yeast in COVID-19 patients (for more detail on C. albicans).

Another project looks at the application of plants as sources for novel drugs against C. neoformans. This is important since 75-80% of African and Asian populations still rely on traditional or complementary/alternative medicines for their primary health-care needs. Coupled to this, modern medicines have become increasingly expensive and thus inaccessible to many in developing countries. Moreover, there is a shift to more “organic” and “vegan” lifestyles as well as the use of herbal medicines to prevent or manage the development of certain diseases.

Yeast contaminated water

“Considering the severity of invasive fungal infection, it is important to study the dissemination and proliferation of various pathogenic or potentially pathogenic fungal species in our surrounding environments. It is crucial to identify major vectors that aid in the spread of pathogenic yeast to prevent infections in susceptible individuals, which mainly include immunocompromised or immunosuppressed individuals.

“Candida, Cryptococcus and Rhodotorula species are commonly found in a variety of water sources with which humans are in frequent contact through daily activities like bathing, washing of clothes and cooking. This recent information further warrants the investigation into the possibility that fungal infections may occur through contact with yeast contaminated water,” concludes Prof Pohl-Albertyn.

She says it is thus important to investigate the presence and antifungal susceptibility of yeast found in water as well as to identify ways to monitor potential fungal outbreaks, possibly through wastewater surveillance. The research aims to identify potentially pathogenic yeast species as well as to quantify levels of azole, specifically fluconazole, in wastewater. In addition, the fluconazole susceptibility of these isolates will be assessed in an attempt to link azole pollution of the environment to antifungal drug resistance development.

News Archive

Miss Deaf SA inspires UFS teachers with her life story
2009-11-26

Pictured from the left, are: K. Botshelo, Vickey Fourie (Miss Deaf SA) and A. Morake.

Vicki Fourie, Miss Deaf SA 2009 and Miss Deaf HESC, recently visited the University of the Free State to motivate aspiring Foundation Phase teachers by sharing her life story with them.

When Vicki was two years old, her parents found out that she couldn’t speak. Two possible explanations were that she had had an ear infection or speech problems. They took her to a specialist and after a brain scan they found out that Vicki had 97% hearing loss in both ears.

Hearing aids were required and Vicki’s father, Pastor Gerhard Fourie from the Christian Revival Church (CRC) enrolled her in a kindergarten school for deaf children, Carel Du Toit in Cape Town.

However, even though Carel Du Toit’s slogan is ‘Where Deaf Children Learn to Speak’, it was because of her mother’s efforts that Vicki is able to communicate effectively with hearing people today.

Bonita Fourie would sit with her child every single day and teach her how to pronounce words phonetically and how to read lips. It is because of that that Vicki is not dependent on sign language at all.

When she was seven years old, her parents enrolled her in an English A.C.E. school. Even though Vicki’s home language is Afrikaans, her parents decided to go against the norm by placing her in an English school (most deaf/hard of hearing people cannot learn a second language). Today Vicki is fluent in both languages.

“I used to think that my hearing aids are just a normal thing you put on, like using glasses for reading,” she said. “I still think that way. People always come up to me and say, ‘It’s amazing how easily you adapt to hearing people. You have no stumbling blocks or holdbacks.’

“To me it’s interesting because my reaction is always this: ‘God gave me this situation, and I have made the best of it. I’ve overcome it, and therefore I can go forward in life’. We were born not to survive, but to thrive. I detest the attitude of, ‘I’m a victim, so the world owes me something’. The world owes nobody anything! We can be victorious over our own circumstances. It is possible. My name’s meaning is testifies to this: “Vicki” comes from the word “Victory”. I was meant to be victorious, and not a victim.”

Vicki, who is now 20, has achieved so much in life. She did ballet, hip-hop, modern dancing, drama (she even went to America for her dramatic monologue and poetry recitation), and she has published over 70 magazine articles, nationally and internationally. Her dreams are to write books one day, become a TV presenter, and motivate and inspire people all over South Africa through public speaking.

When one hears this story, one cannot help but be surprised by her success. It makes you realize that anything is possible when you see the potential in a child, and then do everything in your power to develop it and draw it out. When you believe in the child that you are educating, that child will sense it and blossom like a flower.

“Courage isn’t a gift, it is a decision,” Vicki said. “There will always be things that try to hold you back. The key to working with any child is to be patient, patient, and patient! Teachers play a huge role in equipping children for the future. It is a big responsibility, but it can be done.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept