Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2023 | Story André Damons | Photo Sonia Small
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the research team that is working on various research projects relating to fungi casing yeast.

Fungal infections affect more than one billion people each year, of which more than 150 million cases are severe and life-threatening, causing 1.7 million deaths a year. In South Africa it is estimated that diseases caused by fungal infections total more than three million cases a year. These figures are especially shocking given that prior to 1980, fungal infections were not a major health problem. The WHO has recently published a list of priority pathogens in which fungi are classified in critical, high- and medium- priority groups. Candida species are found in all three levels and Cryptococcus species in critical and medium groups,” says Prof Pohl-Albertyn.

It is for these reasons that researchers in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) are working on various research projects investigating new treatment options beyond the established antifungals. Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the team that is working on various research projects relating to fungi casing yeast.

Multidrug-resistant yeast

One of the yeasts being researched is Candida auris – a multidrug-resistant yeast that can cause severe infections in humans, particularly in people who are hospitalised or have weakened immune systems. C. auris was first identified in 2009 in Japan and has since been reported in over 49 countries.

According to Prof Pohl-Albertyn, C. auris is of concern because it is often resistant to multiple antifungal drugs, making it difficult to treat. In addition, it can survive on surfaces in healthcare settings, which can contribute to its spread between patients, causing outbreaks in hospitals. “Due to its multidrug resistance and potential for transmission, C. auris has been designated by the Centers for Disease Control and Prevention (CDC) as a serious global health threat and listed as the second most critical fungal pathogen in the World Health Organisation (WHO) fungal critical priority group.

C. auris possesses virulence factors such as increased thermotolerance, high salinity tolerance, biofilm formation, and extra cellular enzyme secretion, which are the major contributing factors to its multidrug resistance profile and virulence. Even though C. auris has a variety of virulence factors that it employs against its human host to develop an infection, its virulence mechanisms remain unclear,” says Prof Pohl-Albertyn.

Therefore, several research projects investigate this pathogenic yeast. All of them started with the development of CRISP-Cas9 gene editing tools for this yeast, in order to be able to delete specific genes in this yeast to study their roles. These tools are also constantly being improved for greater efficiency by students under the supervision of Prof Koos Albertyn. Two current projects deal with the function of specific secreted enzymes in the virulence of C. auris.

Environmental yeast

Another yeast being researched, under the supervision of Prof Olihile Sebolai, is Cryptococcus neoformans, an environmental yeast found in trees and soil contaminated with bird droppings. Moreover, it can be airborne and when inhaled it lodges in the lungs (in alveoli) and can cause primary lung infection, explains Prof Pohl-Albertyn.

Cryptococcus neoformans causes AIDS-defining illnesses in people living with HIV/AIDS. To the point, it was not surprising when the WHO declared it as the first critical fungal pathogen of concern. Dissemination to other organs has been reported where it crosses the epithelium barrier by secreting proteases (a class of enzymes that break down proteins in the host) that compromise the tight junctions between the epithelial cells.

The current projects investigate the interaction between the proteases secreted by C. neoformans and co-infecting viruses, such as SARS-CoV-2 and influenza. The SARS-CoV-2 virus is activated by proteases in the host and proteases also help the influenza virus to enter and infect the host cells. Since the host proteases are similar to those secreted by C. neoformans, these projects are focused on determining if the yeast proteases can also help the viruses to cause infection. This project is also extended to study Candida albicans proteases as this is also a common co-infecting yeast in COVID-19 patients (for more detail on C. albicans).

Another project looks at the application of plants as sources for novel drugs against C. neoformans. This is important since 75-80% of African and Asian populations still rely on traditional or complementary/alternative medicines for their primary health-care needs. Coupled to this, modern medicines have become increasingly expensive and thus inaccessible to many in developing countries. Moreover, there is a shift to more “organic” and “vegan” lifestyles as well as the use of herbal medicines to prevent or manage the development of certain diseases.

Yeast contaminated water

“Considering the severity of invasive fungal infection, it is important to study the dissemination and proliferation of various pathogenic or potentially pathogenic fungal species in our surrounding environments. It is crucial to identify major vectors that aid in the spread of pathogenic yeast to prevent infections in susceptible individuals, which mainly include immunocompromised or immunosuppressed individuals.

“Candida, Cryptococcus and Rhodotorula species are commonly found in a variety of water sources with which humans are in frequent contact through daily activities like bathing, washing of clothes and cooking. This recent information further warrants the investigation into the possibility that fungal infections may occur through contact with yeast contaminated water,” concludes Prof Pohl-Albertyn.

She says it is thus important to investigate the presence and antifungal susceptibility of yeast found in water as well as to identify ways to monitor potential fungal outbreaks, possibly through wastewater surveillance. The research aims to identify potentially pathogenic yeast species as well as to quantify levels of azole, specifically fluconazole, in wastewater. In addition, the fluconazole susceptibility of these isolates will be assessed in an attempt to link azole pollution of the environment to antifungal drug resistance development.

News Archive

UFS implements access control measures on our Bloemfontein Campus
2014-11-21



Photo: Hannes Pieterse

Online Application form: non personnel

Map with access gates on the Bloemfontein Campus


Accessing the Bloemfontein Campus from 3 November 2014

Access control during major events on the Bloemfontein Campus

Q&A




The University of the Free State (UFS) has been tightening security measures on its Bloemfontein Campus for quite some time now. Purposefully, we have consolidated several safety measures to keep our students, staff and visitors – the heartbeat of our university – protected.

Our most significant step in this endeavour is now in the process of implementation. All five entrance gates to the campus are being equipped with strict access control.

The first phase of the process was implemented beginning of August 2014. Gates 2 (Badenhorst Street) and 4 (Furstenburg Street) were equipped with card readers. Only persons with valid access cards can enter and leave through these gates. Existing staff and student cards are equipped to be read by the short-distance card readers at the gates in order to activate the booms.

At this stage, staff and students are swiping their cards against the card readers at Gates 2 and 4 or holding it not further than 20 mm from the reader for the boom to open. Card holders now physically stop in front of the boom in order to get access to the campus.  

The duel-frequency card:

The dual-frequency cards available at the Card Division on the Thakaneng Bridge are currently out of stock. New cards will be delivered on Friday 14 November 2014.

The special offer of R30 per access card has been extended to the end of November 2014. To qualify for this offer, staff and students may pay the R30 for a dual-frequency card at the bank or cashiers on the Thakaneng Bridge no later than 28 November.  The cost of dual-frequency cards will increase to R60 per card from 1 December 2014.

Please note that only people with vehicles need to apply for dual-frequency cards.

Students and staff will, however, still be able to gain access to the Bloemfontein Campus with their current cards (in the case of staff and students who haven’t purchased dual-frequency cards yet). As is currently the practice at the gates in Furstenburg and Badenhorst Streets, you will have to stop when you reach the boom, swipe your card past the card reader, the boom will open and you will be able to drive through.

Staff and students using their dual-frequency cards should:

-       Reduce speed
-       Hold the card in a vertical position at the driver’s side window, in the direction of the long-distance reader (see photo)

It is therefore not necessary to stop in front of the boom. On holding your card upright, in line with the card reader, the gate will open automatically and you will be able to drive through (keep your card outside your window; the card reader cannot operate through tinted windows).

Please note that this arrangement only applies to incoming lanes. On leaving the campus, the card has to be swiped. This is due to the number-plate recognition technology installed at exits for additional security.

If the long-distance reader does not work, the dual-frequency card can still be used at a tag reader. 

Applying for your new card:

Electronic fund transfers: Absa Bank: 1 570 8500 71, Ref: 1 413 07670 0198, OR pay the R30 at the UFS Cashiers, Thakaneng Bridge. Please note that the price of the cards will increase to R60 from 1 November 2014.

Take your existing personnel or student card, together with proof of payment, to the UFS Card Division, Bloemfontein Campus, Thakaneng Bridge, to have your photo taken and your new dual-frequency card issued.

Permission to access specific UFS buildings or facilities linked to your existing card, will be automatically linked to the new card.

The new card is marked ‘dual’ on the back in the right, bottom corner.

The UFS Cashiers will provide assistance between 09:00 and 14:30, and the UFS Card Division between 09:00 and 15:00.

Implementation of full access control


Full access control will be implemented on the UFS’s Bloemfontein Campus from 3 November 2014. This means that access control will be implemented at all gates on the Bloemfontein Campus.

Who is using which gate? See Q&A for more information.


Gate 3 (Wynand Mouton Drive) is earmarked for use by official card holders. These include students, staff and persons doing business on campus. Parents dropping and fetching their children for sports, as well as service providers of the UFS, such as architects, may apply for valid cards. These persons will have to provide proof that they have business on campus (complete online application form and sign declaration).

All visitors to the campus will be referred to the Visitor’s Centre at Gate 5 (DF Malherbe Drive). This include, among others, parents, family and friends of students, as well as conference delegates. It is estimated that the Visitor’s Centre will be completed at the end of November (note that the gate at DF Malherbe Drive will be operational by 3 November 2014). Visitors will sign in at the Visitor’s Centre and, depending on the business they have on campus, they will only be allowed on campus for a certain period of time.

•    Lane 1 at Gate 5 will be used by visitors and service providers to enter the campus. Only card holders will be able to use lane 2.
•    Buses and trucks can also enter the campus through Gate 5.

The construction at the Main Gate at Nelson Mandela Drive is to build one extra lane for incoming traffic. The project is estimated to be completed at the end of October 2014.

•    For outgoing traffic, lane 1 (furthest from the guardhouse) and lane 2 will only be used by card holders and lane 3 (closest to the booth) will be used by service providers.
•    For incoming traffic, lanes 2 and 3 were set aside for use by only service providers. Lanes 1 and 4 will be used by only card holders.

Pedestrians

All gates for motorists will also be equipped with a pedestrian thoroughfare on completion of the project. Persons using these pedestrian gates also need to use their cards to get access to the campus.

Pedestrians who are visitors, but aren’t in possession of a valid access card, should please go to the Visitor’s Centre at the gate in DF Malherbe Drive where they will be helped.

More information

For more information on access control at the UFS, please watch our videos and read the Q&A or e-mail your enquiries to accesscontrol@ufs.ac.za.  


Issued by:    Lacea Loader (Director: Communication and Brand Management)
Tel: +27(0)51 401 2584 | +27(0)83 645 2454
E-mail: news@ufs.ac.za


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept