Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2023 | Story André Damons | Photo Sonia Small
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the research team that is working on various research projects relating to fungi casing yeast.

Fungal infections affect more than one billion people each year, of which more than 150 million cases are severe and life-threatening, causing 1.7 million deaths a year. In South Africa it is estimated that diseases caused by fungal infections total more than three million cases a year. These figures are especially shocking given that prior to 1980, fungal infections were not a major health problem. The WHO has recently published a list of priority pathogens in which fungi are classified in critical, high- and medium- priority groups. Candida species are found in all three levels and Cryptococcus species in critical and medium groups,” says Prof Pohl-Albertyn.

It is for these reasons that researchers in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) are working on various research projects investigating new treatment options beyond the established antifungals. Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the team that is working on various research projects relating to fungi casing yeast.

Multidrug-resistant yeast

One of the yeasts being researched is Candida auris – a multidrug-resistant yeast that can cause severe infections in humans, particularly in people who are hospitalised or have weakened immune systems. C. auris was first identified in 2009 in Japan and has since been reported in over 49 countries.

According to Prof Pohl-Albertyn, C. auris is of concern because it is often resistant to multiple antifungal drugs, making it difficult to treat. In addition, it can survive on surfaces in healthcare settings, which can contribute to its spread between patients, causing outbreaks in hospitals. “Due to its multidrug resistance and potential for transmission, C. auris has been designated by the Centers for Disease Control and Prevention (CDC) as a serious global health threat and listed as the second most critical fungal pathogen in the World Health Organisation (WHO) fungal critical priority group.

C. auris possesses virulence factors such as increased thermotolerance, high salinity tolerance, biofilm formation, and extra cellular enzyme secretion, which are the major contributing factors to its multidrug resistance profile and virulence. Even though C. auris has a variety of virulence factors that it employs against its human host to develop an infection, its virulence mechanisms remain unclear,” says Prof Pohl-Albertyn.

Therefore, several research projects investigate this pathogenic yeast. All of them started with the development of CRISP-Cas9 gene editing tools for this yeast, in order to be able to delete specific genes in this yeast to study their roles. These tools are also constantly being improved for greater efficiency by students under the supervision of Prof Koos Albertyn. Two current projects deal with the function of specific secreted enzymes in the virulence of C. auris.

Environmental yeast

Another yeast being researched, under the supervision of Prof Olihile Sebolai, is Cryptococcus neoformans, an environmental yeast found in trees and soil contaminated with bird droppings. Moreover, it can be airborne and when inhaled it lodges in the lungs (in alveoli) and can cause primary lung infection, explains Prof Pohl-Albertyn.

Cryptococcus neoformans causes AIDS-defining illnesses in people living with HIV/AIDS. To the point, it was not surprising when the WHO declared it as the first critical fungal pathogen of concern. Dissemination to other organs has been reported where it crosses the epithelium barrier by secreting proteases (a class of enzymes that break down proteins in the host) that compromise the tight junctions between the epithelial cells.

The current projects investigate the interaction between the proteases secreted by C. neoformans and co-infecting viruses, such as SARS-CoV-2 and influenza. The SARS-CoV-2 virus is activated by proteases in the host and proteases also help the influenza virus to enter and infect the host cells. Since the host proteases are similar to those secreted by C. neoformans, these projects are focused on determining if the yeast proteases can also help the viruses to cause infection. This project is also extended to study Candida albicans proteases as this is also a common co-infecting yeast in COVID-19 patients (for more detail on C. albicans).

Another project looks at the application of plants as sources for novel drugs against C. neoformans. This is important since 75-80% of African and Asian populations still rely on traditional or complementary/alternative medicines for their primary health-care needs. Coupled to this, modern medicines have become increasingly expensive and thus inaccessible to many in developing countries. Moreover, there is a shift to more “organic” and “vegan” lifestyles as well as the use of herbal medicines to prevent or manage the development of certain diseases.

Yeast contaminated water

“Considering the severity of invasive fungal infection, it is important to study the dissemination and proliferation of various pathogenic or potentially pathogenic fungal species in our surrounding environments. It is crucial to identify major vectors that aid in the spread of pathogenic yeast to prevent infections in susceptible individuals, which mainly include immunocompromised or immunosuppressed individuals.

“Candida, Cryptococcus and Rhodotorula species are commonly found in a variety of water sources with which humans are in frequent contact through daily activities like bathing, washing of clothes and cooking. This recent information further warrants the investigation into the possibility that fungal infections may occur through contact with yeast contaminated water,” concludes Prof Pohl-Albertyn.

She says it is thus important to investigate the presence and antifungal susceptibility of yeast found in water as well as to identify ways to monitor potential fungal outbreaks, possibly through wastewater surveillance. The research aims to identify potentially pathogenic yeast species as well as to quantify levels of azole, specifically fluconazole, in wastewater. In addition, the fluconazole susceptibility of these isolates will be assessed in an attempt to link azole pollution of the environment to antifungal drug resistance development.

News Archive

Artistic development at UFS to transform the face of Bloemfontein creatively
2015-07-02

The 7-metre high ‘Urban Fox’ is one of Alex Rinsler's artworks adding a fragment of the wild to the city of Shanghai in China.

Bold, bright, and beautiful public art sculptures are in the inception phase at the university’s Bloemfontein Campus. Manchester-based public artist, Alex Rinsler, of the Programme for Innovation in Artform Development (PIAD)’s forum for artist development, is to install three enthralling sculptures in the city of Bloemfontein.

The PIAD forum for artist development is an initiative of the Vrystaat Arts Festival, formerly known as the Vryfees, which aims to celebrate art in the Free State by hosting experimental art practices. In its capacity as a PIAD partner, the University of the Free State promotes increased access to, and participation in, culture as a form of human development.

Presenting an artist’s talk titled ‘Urban Safari: Art in public space,’ on the Bloemfontein Campus recently Rinsler introduced himself and his creative ideas to students, staff, and the public at the Johannes Stegman Art Gallery. The talk served as an invitation to the active participation of Bloemfontein citizens in all phases leading to the installations. Dispersed across the Mangaung Metropolitan, the giant sculptures are intended to capture and reflect different aspects of the community’s lived experiences. 

As a public artist based in the United Kingdom (UK), Rinsler has exhibited in cities nationally and internationally, with the intention of bringing a touch of the wild to urban lives. His vision is to witness the development of cities into cultural boulevards, and explore “what we can do to bring back the sense of nature, the wild” by adding new symbolism to urban lifestyle.

“I believe in creating work accessible to the public, which stimulates conversation,” said the Clore Leadership Programme Fellow (University of Manchester) and Founder of Pirate Technics - an artistic practice company.

In 2012, he worked with 31 Master’s students from 24 countries on an icon for global peace named “Under the Baobab” in London. The colourful and magnificent Baobab tree made from pieces of fabric representing distinct cultures told the story of migration to London.

Rinsler is determined that the Bloemfontein “project, similar to the London installation, will create imagery that people will remember.”

Dr Ricardo Peach, Director of the Vrystaat Arts Festival and PIAD, hopes the project fosters diversity while producing a “communal cultural product." 

“What I know about Alex’s work is that he will be working with what he calls a self-selected community, people who are interested in this, and who want to work together to build these sculptures, as part as a process for them to get a sense of where they belong, and their input into the city. It’s about people telling their own stories.”

The public installations are a way of transforming the landscape, and connecting people of “a place like Bloemfontein where communities are often still so divided,” said Peach.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept