Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2023 | Story André Damons | Photo Sonia Small
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the research team that is working on various research projects relating to fungi casing yeast.

Fungal infections affect more than one billion people each year, of which more than 150 million cases are severe and life-threatening, causing 1.7 million deaths a year. In South Africa it is estimated that diseases caused by fungal infections total more than three million cases a year. These figures are especially shocking given that prior to 1980, fungal infections were not a major health problem. The WHO has recently published a list of priority pathogens in which fungi are classified in critical, high- and medium- priority groups. Candida species are found in all three levels and Cryptococcus species in critical and medium groups,” says Prof Pohl-Albertyn.

It is for these reasons that researchers in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) are working on various research projects investigating new treatment options beyond the established antifungals. Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the team that is working on various research projects relating to fungi casing yeast.

Multidrug-resistant yeast

One of the yeasts being researched is Candida auris – a multidrug-resistant yeast that can cause severe infections in humans, particularly in people who are hospitalised or have weakened immune systems. C. auris was first identified in 2009 in Japan and has since been reported in over 49 countries.

According to Prof Pohl-Albertyn, C. auris is of concern because it is often resistant to multiple antifungal drugs, making it difficult to treat. In addition, it can survive on surfaces in healthcare settings, which can contribute to its spread between patients, causing outbreaks in hospitals. “Due to its multidrug resistance and potential for transmission, C. auris has been designated by the Centers for Disease Control and Prevention (CDC) as a serious global health threat and listed as the second most critical fungal pathogen in the World Health Organisation (WHO) fungal critical priority group.

C. auris possesses virulence factors such as increased thermotolerance, high salinity tolerance, biofilm formation, and extra cellular enzyme secretion, which are the major contributing factors to its multidrug resistance profile and virulence. Even though C. auris has a variety of virulence factors that it employs against its human host to develop an infection, its virulence mechanisms remain unclear,” says Prof Pohl-Albertyn.

Therefore, several research projects investigate this pathogenic yeast. All of them started with the development of CRISP-Cas9 gene editing tools for this yeast, in order to be able to delete specific genes in this yeast to study their roles. These tools are also constantly being improved for greater efficiency by students under the supervision of Prof Koos Albertyn. Two current projects deal with the function of specific secreted enzymes in the virulence of C. auris.

Environmental yeast

Another yeast being researched, under the supervision of Prof Olihile Sebolai, is Cryptococcus neoformans, an environmental yeast found in trees and soil contaminated with bird droppings. Moreover, it can be airborne and when inhaled it lodges in the lungs (in alveoli) and can cause primary lung infection, explains Prof Pohl-Albertyn.

Cryptococcus neoformans causes AIDS-defining illnesses in people living with HIV/AIDS. To the point, it was not surprising when the WHO declared it as the first critical fungal pathogen of concern. Dissemination to other organs has been reported where it crosses the epithelium barrier by secreting proteases (a class of enzymes that break down proteins in the host) that compromise the tight junctions between the epithelial cells.

The current projects investigate the interaction between the proteases secreted by C. neoformans and co-infecting viruses, such as SARS-CoV-2 and influenza. The SARS-CoV-2 virus is activated by proteases in the host and proteases also help the influenza virus to enter and infect the host cells. Since the host proteases are similar to those secreted by C. neoformans, these projects are focused on determining if the yeast proteases can also help the viruses to cause infection. This project is also extended to study Candida albicans proteases as this is also a common co-infecting yeast in COVID-19 patients (for more detail on C. albicans).

Another project looks at the application of plants as sources for novel drugs against C. neoformans. This is important since 75-80% of African and Asian populations still rely on traditional or complementary/alternative medicines for their primary health-care needs. Coupled to this, modern medicines have become increasingly expensive and thus inaccessible to many in developing countries. Moreover, there is a shift to more “organic” and “vegan” lifestyles as well as the use of herbal medicines to prevent or manage the development of certain diseases.

Yeast contaminated water

“Considering the severity of invasive fungal infection, it is important to study the dissemination and proliferation of various pathogenic or potentially pathogenic fungal species in our surrounding environments. It is crucial to identify major vectors that aid in the spread of pathogenic yeast to prevent infections in susceptible individuals, which mainly include immunocompromised or immunosuppressed individuals.

“Candida, Cryptococcus and Rhodotorula species are commonly found in a variety of water sources with which humans are in frequent contact through daily activities like bathing, washing of clothes and cooking. This recent information further warrants the investigation into the possibility that fungal infections may occur through contact with yeast contaminated water,” concludes Prof Pohl-Albertyn.

She says it is thus important to investigate the presence and antifungal susceptibility of yeast found in water as well as to identify ways to monitor potential fungal outbreaks, possibly through wastewater surveillance. The research aims to identify potentially pathogenic yeast species as well as to quantify levels of azole, specifically fluconazole, in wastewater. In addition, the fluconazole susceptibility of these isolates will be assessed in an attempt to link azole pollution of the environment to antifungal drug resistance development.

News Archive

UFS researcher selected as emerging voice
2016-11-03

Description: Andre Janse van Rensburg  Tags: Andre Janse van Rensburg

André Janse van Rensburg, researcher at the
Centre for Health Systems Research and Development
at the University of the Free State, will be spending
almost three weeks in Vancouver, Canada. He will be
attending the Emerging Voices for Global Health programme
and Global Symposium on Health Systems Research.
Photo: Jóhann Thormählen

His research on the implementation of the Integrated School Health Programme (ISHP) in rural South Africa led to André Janse van Rensburg being selected to become part of the Emerging Voices for Global Health (EV4GH) group.

It is a collection of young, promising health policy and systems researchers, decision-makers and other health system professionals. A total of 222 applications from 50 countries were received for this programme, from 3-19 November 2016 in Vancouver, Canada.

The EV4GH is linked to the fourth Global Symposium on Health Systems Research (HSR2016), from 14-18 November 2016. It also taking place in Vancouver and Janse van Rensburg will be taking part, thanks to his research on the ISHP in the Maluti-a-Phofung area. He is a researcher at the Centre for Health Systems Research & Development (CHSR&D) at the University of the Free State (UFS).

The theme of the HSR2016 is Resilient and Responsive Health Systems for a Changing World. It is organised every two years by Health Systems Global to bring together roleplayers involved in health systems and policy research and practice.

Janse van Rensburg also part of Health Systems Global network
The EV4GH goals relate to the strengthening of global health systems and policies, particularly from the Global South (low-to-middle income countries with chronic health system challenges). The initiative involves workshops, presentations, and interactive discussions related to global health problems and solutions.

As an EV4GH alumni, Janse van Rensburg will become part of the Health Systems Global network. Partnering institutions include public health institutes from China, India, South Africa, Belgium, and the UK.

“The EV4GH is for young, promising health
policy and systems researchers, decision-makers
and other health system professionals.”

Research aims to explore implementation of schools health programme
In 2012, the ISHP was introduced in South Africa. This policy forms part of the government's Primary Health Care Re-engineering Programme and is designed to offer a comprehensive and integrated package of health services to all pupils across all educational phases.

Janse van Rensburg, along with Dr Asta Rau, Director of the CHSR&D, aimed to explore and describe implementation of the ISHP. The goals were to assess the capacity and resources available for implementation, identify barriers that hamper implementation, detect enabling factors and successful aspects of implementation and disseminate best practices in, and barriers to, ISPH implementation with recommendations to policymakers, managers and practitioners.

“A lot of people were saying they don’t
have enough resources to adequately
implement the policy as it is supposed to
be implemented.”

Findings of project in Maluti-a-Phofung area
Janse van Rensburg said the ISHP had various strengths. “People were impressed with the integrated nature of the policy and the way people collaborated across disciplines and departments. The school team were found to work very well with the schools and gel well with the educators and principles.”

He said the main weakness of the implementation was resources. “A lot of people were saying they don’t have enough resources to adequately implement the policy as it is supposed to be implemented.

“Another drawback is the referral, because once you identify a problem with a child, the child needs to be referred to a hospital or clinic.” He means once a child gets referred, there is no way of knowing whether the child has been helped and in many cases there is no specialist at the hospital.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept