Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2023 | Story André Damons | Photo Sonia Small
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the research team that is working on various research projects relating to fungi casing yeast.

Fungal infections affect more than one billion people each year, of which more than 150 million cases are severe and life-threatening, causing 1.7 million deaths a year. In South Africa it is estimated that diseases caused by fungal infections total more than three million cases a year. These figures are especially shocking given that prior to 1980, fungal infections were not a major health problem. The WHO has recently published a list of priority pathogens in which fungi are classified in critical, high- and medium- priority groups. Candida species are found in all three levels and Cryptococcus species in critical and medium groups,” says Prof Pohl-Albertyn.

It is for these reasons that researchers in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) are working on various research projects investigating new treatment options beyond the established antifungals. Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the team that is working on various research projects relating to fungi casing yeast.

Multidrug-resistant yeast

One of the yeasts being researched is Candida auris – a multidrug-resistant yeast that can cause severe infections in humans, particularly in people who are hospitalised or have weakened immune systems. C. auris was first identified in 2009 in Japan and has since been reported in over 49 countries.

According to Prof Pohl-Albertyn, C. auris is of concern because it is often resistant to multiple antifungal drugs, making it difficult to treat. In addition, it can survive on surfaces in healthcare settings, which can contribute to its spread between patients, causing outbreaks in hospitals. “Due to its multidrug resistance and potential for transmission, C. auris has been designated by the Centers for Disease Control and Prevention (CDC) as a serious global health threat and listed as the second most critical fungal pathogen in the World Health Organisation (WHO) fungal critical priority group.

C. auris possesses virulence factors such as increased thermotolerance, high salinity tolerance, biofilm formation, and extra cellular enzyme secretion, which are the major contributing factors to its multidrug resistance profile and virulence. Even though C. auris has a variety of virulence factors that it employs against its human host to develop an infection, its virulence mechanisms remain unclear,” says Prof Pohl-Albertyn.

Therefore, several research projects investigate this pathogenic yeast. All of them started with the development of CRISP-Cas9 gene editing tools for this yeast, in order to be able to delete specific genes in this yeast to study their roles. These tools are also constantly being improved for greater efficiency by students under the supervision of Prof Koos Albertyn. Two current projects deal with the function of specific secreted enzymes in the virulence of C. auris.

Environmental yeast

Another yeast being researched, under the supervision of Prof Olihile Sebolai, is Cryptococcus neoformans, an environmental yeast found in trees and soil contaminated with bird droppings. Moreover, it can be airborne and when inhaled it lodges in the lungs (in alveoli) and can cause primary lung infection, explains Prof Pohl-Albertyn.

Cryptococcus neoformans causes AIDS-defining illnesses in people living with HIV/AIDS. To the point, it was not surprising when the WHO declared it as the first critical fungal pathogen of concern. Dissemination to other organs has been reported where it crosses the epithelium barrier by secreting proteases (a class of enzymes that break down proteins in the host) that compromise the tight junctions between the epithelial cells.

The current projects investigate the interaction between the proteases secreted by C. neoformans and co-infecting viruses, such as SARS-CoV-2 and influenza. The SARS-CoV-2 virus is activated by proteases in the host and proteases also help the influenza virus to enter and infect the host cells. Since the host proteases are similar to those secreted by C. neoformans, these projects are focused on determining if the yeast proteases can also help the viruses to cause infection. This project is also extended to study Candida albicans proteases as this is also a common co-infecting yeast in COVID-19 patients (for more detail on C. albicans).

Another project looks at the application of plants as sources for novel drugs against C. neoformans. This is important since 75-80% of African and Asian populations still rely on traditional or complementary/alternative medicines for their primary health-care needs. Coupled to this, modern medicines have become increasingly expensive and thus inaccessible to many in developing countries. Moreover, there is a shift to more “organic” and “vegan” lifestyles as well as the use of herbal medicines to prevent or manage the development of certain diseases.

Yeast contaminated water

“Considering the severity of invasive fungal infection, it is important to study the dissemination and proliferation of various pathogenic or potentially pathogenic fungal species in our surrounding environments. It is crucial to identify major vectors that aid in the spread of pathogenic yeast to prevent infections in susceptible individuals, which mainly include immunocompromised or immunosuppressed individuals.

“Candida, Cryptococcus and Rhodotorula species are commonly found in a variety of water sources with which humans are in frequent contact through daily activities like bathing, washing of clothes and cooking. This recent information further warrants the investigation into the possibility that fungal infections may occur through contact with yeast contaminated water,” concludes Prof Pohl-Albertyn.

She says it is thus important to investigate the presence and antifungal susceptibility of yeast found in water as well as to identify ways to monitor potential fungal outbreaks, possibly through wastewater surveillance. The research aims to identify potentially pathogenic yeast species as well as to quantify levels of azole, specifically fluconazole, in wastewater. In addition, the fluconazole susceptibility of these isolates will be assessed in an attempt to link azole pollution of the environment to antifungal drug resistance development.

News Archive

Message of appreciation from the UFS acting Vice-Chancellor and Rector: Prof Nicky Morgan
2017-01-04

Dear Colleagues, Students, Parents/Guardians, Alumni, and Friends of the university

The University of the Free State (UFS) successfully completed the 2016 academic year, with the official examination ending on 14 December 2016.  We have also completed the last of our graduation ceremonies, and are now preparing to accommodate the additional and ad hoc examinations in the coming weeks.
 
This comes after the university has successfully readjusted its academic programme in October 2016, subsequent to the disruption of activities and programmes for almost a month. All of this could not have happened without the extraordinary support and dedication of the staff and majority of the students at the UFS.
 
I would like to thank all our staff, parents/guardians, alumni, and friends of the UFS for the role they played during these challenging months in order to ensure that we could end the academic year successfully. If it was not for your understanding and uncompromising support, we would not have been able to complete the curricula, continue with the exams, and end the year in this way.
 
However, we all know that this was not an easy task. The sheer dedication and drive of our academic staff to adapt the mode of teaching and assessment of modules must be applauded, as it took courage and perseverance. Not only did they manage to complete the curricula, they also managed to do the assessment almost completely online. The incredible role of our administrative and support staff – including our security personnel – should also be acknowledged with deep appreciation.
 
This has been a learning experience for all, which has provided us with a solid base for academic recovery in the future.
 
During its quarterly meeting on 2 December 2016, the UFS Council expressed appreciation to all staff, students, and the university management for the successful completion of the 2016 academic year.
 
To all our alumni and donors who continued to support the UFS this year – thank you for your commitment, loyalty, and continued contribution.
 
Looking forward to 2017
The UFS announced on 7 December 2016 that it will be increasing tuition and housing and residence fees for 2017 by 8%. The approved increase in fees is in line with the recommendations by the Minister of Higher Education and Training, Dr Blade Nzimande, on 19 September 2016. The increases were approved by the UFS Council on 2 December 2016, with the understanding that it would be paid by the Department of Higher Education and Training by means of the fee adjustment grant for qualifying students with a combined family income of not more than R600 000 per annum.

The university management is aware of the economic realities in South Africa, as well as the financial pressure households are experiencing. The long-term financial sustainability of the UFS, as well as the financial constraints which impact teaching and learning, research, and community service, continues to remain of utmost importance to the Council and to the senior leadership of the UFS.
 
The university management stated its pro-poor approach to student funding on several occasions; that academically deserving students from poor and working class families should receive substantial financial support. For this reason – also because it does not place a burden on poor and working-class families – an increase in tuition fees aligned with the DHET proposal was submitted to Council for approval. The presidents of the Bloemfontein and Qwaqwa Campus Student Representative Councils were present and participated in the discussion on fees – also when Council approved the increase.
 
I am thankful to report that more applications for admission were received for 2017 (42 568) in comparison to 2016 (29 284), and we are excited to welcome first-year students to our campuses in January 2017. See 2017 calendar of events and information.
 
The necessary safety measures have been taken and contingency plans are in place when students return in 2017. The university management will continue to work with the South African Police Service to ensure stability on the campuses and the uninterrupted continuance of the Academic Project.
 
In conclusion, I would like to wish you a restful and safe Festive Season. Thank you once again for your crucial role in making the University of the Free State still one of the universities of choice in the country.
 
Best regards
 
Prof Nicky Morgan
Acting Vice-Chancellor and Rector
University of the Free State

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept