Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 June 2023 | Story André Damons | Photo Supplied
Dr Michael Pienaar and Dr Edward C Netherlands
Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health, is a finalist in two categories of this year’s NSTF-South32 Awards. Dr Edward C Netherlands, Senior Lecturer in the UFS Department of Zoology and Entomology, is also in the running for his first NSTF-South32 Award.

Dr Michael Pienaar, Senior Lecturer and Specialist in the University of the Free State (UFS) Department of Paediatrics and Child Health, is a finalist in two categories of the 2023 NSTF-South32 Awards, popularly known as the ‘Science Oscars’ of South Africa.

Dr Pienaar, who has been working in paediatric critical care since 2019 and sees the care of critically ill children as his mission and calling in life, has been named a finalist in the TW Kambule-NSTF Award: Emerging Researcher and the NSTF-SAMRC Clinician-Scientist Award categories.

Another UFS staff member, Dr Edward C Netherlands, Senior Lecturer in the Department of Zoology and Entomology, is also a finalist in the TW Kambule-NSTF Award: Emerging Researcher category.

The NSTF-SAMRC Clinician-Scientist Award, sponsored by the South African Medical Research Council (SAMRC), is a new award for an outstanding contribution by a clinician-scientist, with a focus on work to enhance life and improve community health. This new category is modelled on the Emerging Researcher category.

‘Validating to have research recognised’

Dr Pienaar says it is humbling to be considered for these awards alongside formidable, accomplished, and innovative clinicians and scientists. “This is all somewhat surreal, as I was not anticipating being shortlisted as a finalist. It is validating to have had my research, which I am committed to, recognised on this platform. I am very grateful to the School of Clinical Medicine and the Faculty of Health Sciences and University of the Free State for nominating me for these awards.”

He was nominated by Dr Claire Armour Barrett, Clinical Research Director and Specialist Physician in the UFS School of Clinical Medicine.

Dr Pienaar says his current research focusses on applied machine learning in paediatric critical care. He has been working on the development of machine learning models that can be used in clinical practice to improve patient care.

“The work leading to these nominations focused on triage and identification of critically ill children in South Africa. Currently, I am working towards machine learning models implemented in point-of-care ultrasonography and mechanical ventilation.

“I am pleased just to be shortlisted for these awards. I think this provides important visibility for my work, which I feel has major long-term implications for clinical practice. I am also very happy to represent the research work being done in the Faculty of Health Sciences and the UFS on this platform.”

On what it will mean to win a ‘Science Oscar’, Dr Pienaar says, “While this would advance my career, I am very aware that all the candidates would be worthy winners. As it is, the opportunity to be a scholar is reward unto itself, and I am very privileged to be able to do the research I do. As ever, I am very grateful to the University and the Faculty of Health Sciences as well as the National Research Foundation for supporting my work.”

‘Honour and privilege’

Dr Netherlands, who was nominated by Prof Corli Witthuhn, former UFS Vice-Rector for Research and Internationalisation, says, “It is a great honour and privilege to represent the UFS.”

His work as a parasitologist and herpetologist involves specialised research in the study of blood parasites. His current research focuses on the diversity, evolution, and ecological implications of blood parasites in herpetofauna (reptiles and amphibians of a particular region).

“Being shortlisted as a finalist for this award will be a humbling achievement in my career, that may lead to new opportunities and new collaborations,” Dr Netherlands says. “Furthermore, being shortlisted provides a sense of validation and affirmation for the effort that has gone into conducting my research.”

The announcement of the winners will take place at the NSTF-South32 Awards Gala Event on 13 July 2023.

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept