Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 March 2023 | Story Rulanzen Martin | Photo Stephen Collett
From left: Hanlie Grobler, Senior Officer at the CFM; Prof Koos Terblans, Head of the Physics Department; Nonkululeko Phili, Assistant Officer at the CFM; and Edward Lee, Junior Lecturer and Researcher at the CFM. Photo: Stephen Collett

The Centre for Microscopy (CFM) in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) unveiled a sophisticated JEOL High Resolution Transmission Electron Microscope (HRTEM) during a two-day microscopy conference on 14 and 15 March 2023. The microscope is part of a larger investment into research equipment worth R65 million. 

Speaking at the opening of the conference, Prof Corli Witthuhn, out-going Vice-Rector: Research and Internationalisation, said the microscope purchase “is a significant milestone in the university’s bid for cutting-edge research”. The HRTEM is part of a larger consignment of JEOL equipment at the UFS and, according to Dr Sarah Harper from JEOL UK, it places the UFS in a unique position.  

UFS at the forefront in using electron microscopes  

The HRTEM microscope can be utilised across disciplines and will give the UFS an advantage in uncovering new solutions and creating national and international interdisciplinary research collaborations. “The UFS is at the forefront in this field in SA and continues to push the boundaries,” Prof Witthuhn said. This move will also positively impact the training of honours, master’s, and doctoral students. 

Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, reiterated Prof Witthuhn’s sentiments by saying that this equipment will set the faculty apart from its competitors. “The faculty already reached the goals of Vision 130 by being proactive,” he said. In the past seven years more than R300 million worth of equipment was acquired by the faculty, but he added that to be the best is not just about the best equipment – “the data coming from using this equipment is what will make the real difference”.

Prof Koos Terblans
Prof Koos Terblans opens the conference on 14 March 2023. Photo: Stephen Collett .

Road to the JEOL HRTEM started in 2018

The process of acquiring a HRTEM microscope started in 2018 and was concluded with the purchasing of the JOEL microscopes in March 2020, a few weeks before the first COVID-19 lockdown. The purchase was made possible through the collaboration between the faculties of Natural and Agricultural Sciences and Health Sciences. Thanks to the dedication of staff members in the Centre for Microscopy and Physics, it was possible to accept delivery of the new HRTEM in June 2021. Prof Koos Terblans, Head of the Physics Department and the Centre for Microscopy, who led the entire project, said this was one of the “proudest moments in my career”.  

Installing the equipment involved various university resources, including the University Estates Department, which had to make additional structural changes to the room where the equipment is housed. This included digging two metres into the existing floor and placing the HRTEM on a 70-tonne solid concrete block, to ensure that the equipment was secure and vibration free.

Prof Terblans said now that the HRTEM from JEOL and its supporting equipment – the final piece of the R65 million research investment puzzle – is part of the faculty’s resources, it is up to the scientists and academics to utilise it for innovative research, enhance research productivity, and foster new collaborations. 

Edward Lee
Edward Lee shows the new HRTEM electron microscope to colleagues and conference attendees.Photo: Stephen Collett 

News Archive

Plant-strengthening agent a result of joint effort between UFS and German company
2015-07-27

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.

The application of a plant-strengthening agent in the agricultural industry has, until recently, been largely ignored, says Dr Elmarie van der Watt of the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS). The agent was co-developed by researchers at the UFS and a German company.

The product is moving into new markets, such as China, Vietnam, the USA, and Australia.

ComCat® was the result of extensive research by the German company Agraforum AG. Commercialisation was limited initially to Europe, while research was expanded to other parts of the world, with the University of the Free State as the main research centre.  ComCat® is a unique, non-toxic plant strengthening agent derived from wild plants. It enhances plant growth and yield, as well as resistance against abiotic and biotic stress factors.

Dr Van der Watt says that, in nature, plants communicate and interact by means of allelochemicals (the inherent silent tool of self-protection among plants) and other phytochemicals (chemical compounds that occur naturally in plants), as part of their resistance mechanisms towards biotic and abiotic stress conditions.

Most wild-plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent. “Active compounds contained in extracts from wild plants applied to monoculture crops can potentially supply the signal for the latter to activate their dormant resistance mechanisms.” 

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.  A major advantage is that, despite its enhancing effects on root development and yield, it does not induce unwanted early vegetative growth that could jeopardise the final yield, as happened in the past for nitrogen application at an early growth stage. 

Dr Van der Watt says, “Physiological data on the effect of the natural bio-stimulant product on photosynthesis, respiration, and resistance towards biotic stress conditions indicate that it can be regarded as a useful tool to manipulate agricultural crops. Research also showed that the field of application for this natural product is never-ending, and new applications are being investigated every day.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept