Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 March 2023 | Story Rulanzen Martin | Photo Stephen Collett
From left: Hanlie Grobler, Senior Officer at the CFM; Prof Koos Terblans, Head of the Physics Department; Nonkululeko Phili, Assistant Officer at the CFM; and Edward Lee, Junior Lecturer and Researcher at the CFM. Photo: Stephen Collett

The Centre for Microscopy (CFM) in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) unveiled a sophisticated JEOL High Resolution Transmission Electron Microscope (HRTEM) during a two-day microscopy conference on 14 and 15 March 2023. The microscope is part of a larger investment into research equipment worth R65 million. 

Speaking at the opening of the conference, Prof Corli Witthuhn, out-going Vice-Rector: Research and Internationalisation, said the microscope purchase “is a significant milestone in the university’s bid for cutting-edge research”. The HRTEM is part of a larger consignment of JEOL equipment at the UFS and, according to Dr Sarah Harper from JEOL UK, it places the UFS in a unique position.  

UFS at the forefront in using electron microscopes  

The HRTEM microscope can be utilised across disciplines and will give the UFS an advantage in uncovering new solutions and creating national and international interdisciplinary research collaborations. “The UFS is at the forefront in this field in SA and continues to push the boundaries,” Prof Witthuhn said. This move will also positively impact the training of honours, master’s, and doctoral students. 

Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, reiterated Prof Witthuhn’s sentiments by saying that this equipment will set the faculty apart from its competitors. “The faculty already reached the goals of Vision 130 by being proactive,” he said. In the past seven years more than R300 million worth of equipment was acquired by the faculty, but he added that to be the best is not just about the best equipment – “the data coming from using this equipment is what will make the real difference”.

Prof Koos Terblans
Prof Koos Terblans opens the conference on 14 March 2023. Photo: Stephen Collett .

Road to the JEOL HRTEM started in 2018

The process of acquiring a HRTEM microscope started in 2018 and was concluded with the purchasing of the JOEL microscopes in March 2020, a few weeks before the first COVID-19 lockdown. The purchase was made possible through the collaboration between the faculties of Natural and Agricultural Sciences and Health Sciences. Thanks to the dedication of staff members in the Centre for Microscopy and Physics, it was possible to accept delivery of the new HRTEM in June 2021. Prof Koos Terblans, Head of the Physics Department and the Centre for Microscopy, who led the entire project, said this was one of the “proudest moments in my career”.  

Installing the equipment involved various university resources, including the University Estates Department, which had to make additional structural changes to the room where the equipment is housed. This included digging two metres into the existing floor and placing the HRTEM on a 70-tonne solid concrete block, to ensure that the equipment was secure and vibration free.

Prof Terblans said now that the HRTEM from JEOL and its supporting equipment – the final piece of the R65 million research investment puzzle – is part of the faculty’s resources, it is up to the scientists and academics to utilise it for innovative research, enhance research productivity, and foster new collaborations. 

Edward Lee
Edward Lee shows the new HRTEM electron microscope to colleagues and conference attendees.Photo: Stephen Collett 

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept