Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 March 2023 | Story Jóhann Thormählen | Photo Supplied
Nomsa Mathontsi is a senior member of the Kovsie women’s football team and has played in two Varsity Football and three USSA tournaments.

Nomsa Mathontsi senior member of the University of the Free State (UFS) Women’s Football team has, despite enormous challenges excelled and achieved remarkable heights on and off the field.

Ms Mathontsi has been an avid sportsperson from an early age. Among her many extraordinary achievements the talented Ms Mathontsi has also been on the South African Women’s National Soccer squad Banyana Banyana.

What many may not know though, is that this is notwithstanding the obstacle Ms Mathontsi overcame in order to reach such heights. The Kovsie striker has limited hearing in her right ear and received a cochlear implant before she began her UFS journey in 2018.

I got affected when I was really young. I was doing athletics. This one time I had a very hectic race, which blocked my right ear –

At the University of the Free State Kovsie Health takes into account the medical history of its’ high-performance athletes who are closely monitored with the aim of achieving optimal performance. As in the case of Ms Mathonsi it is most important that the medical practitioner, Dr Gerhard Jansen, and his team at Kovsie Health take into consideration her medical history. 

Kovsie Health provides a range of services to the UFS football programme that include: medical screenings; injury diagnosis; treatment; and rehabilitation. 

Compulsory medicals

“I got affected when I was really young. I was doing athletics. This one time I had a very hectic race, which blocked my right ear.

“At first my family thought it was going to be OK, until we realised it was extremely serious and we had to do medicals,” the versatile player says.

Ms Mathontsi, a BAdmin student in Economic and Management Sciences has an implant in her skull but cannot play with her hearing device.

“Even the implant itself can be dangerous. If someone hits me with an elbow or something hard or (on the) head, it will hurt.”

It is compulsory for all UFS football players to take the South African Football Association medicals. Kovsie Health assists players in this process. This is conducted before each new season and include a basic medical, family and practice history, basis line tests, injury assessments etc.

According to Jansen, Kovsie Health needs to be aware of Mathontsi’s medical history so that they may make informed decisions and provide guidance. We will document it and if she should get concussion you will have to take it into account. We for instance know we shouldn’t see a loss of hearing as a negative sign.”

Special Kovsie football family

Mathontsi has represented the UFS in two Varsity Football campaigns, three USSA tournaments and plays in the Free State Sasol League.

Although she hasn’t made her international debut, she received two call-ups to the South African women’s squad and trained with Banyana Banyana.

The number 8 loves her UFS football family and says she has also learnt to balance sport and university.

“I think it is the bond and relationships we have with each other on and off the field that makes it special.

“I have learnt a lot in terms of leadership and how to take leadership as a senior player in the team.”

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept