Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 March 2023 | Story Kekeletso Takang and Lacea Loader | Photo UFS Photo Archive
Tate_Makgoe
Tate Makgoe, late MEC of Education in the Free State.

The management of the University of the Free State (UFS) is shocked and saddened to learn of the untimely passing of Tate Makgoe, member of the Executive Council (MEC) for Education in the Free State, who passed away on Sunday 5 March 2023 after a car accident.

MEC Makgoe was a UFS Council member as representative of the Free State Premier for two terms, from 1 November 2010 to 31 December 2018. He was also a member of the Executive Committee of Council in his second term.

“On behalf of the UFS Council, the university management, and the university community, I would like to express our heartfelt condolences to MEC Makgoe’s family, Premier Mxolisi Dukwana, and the Executive Council of the Free State, as well as the Free State education sector at large, for the loss of a great leader,” said Prof Francis Petersen, UFS Rector and Vice-Chancellor.  

MEC Makgoe had a strong relationship with the UFS, which saw him collaborating on numerous projects, including the Internet Broadcast Project from 2012 to 2022, which was aimed at supporting Grade 12 learners and teachers.

Prof Petersen acknowledged MEC Makgoe for his contributions to the university, the institution’s Council, and the province’s education sector. “We are proud to have been associated with MEC Makgoe. Not only in his capacity as MEC, but also as alumnus. He held an Honours degree in Commerce from the UFS and was registered for a PhD in Education Leadership and Policy Studies at the university at the time of his passing. In 2013, he received a Cum Laude Award during the Chancellor's Distinguished Alumni Awards ceremony,” said Prof Petersen.

Through continued collaboration and under his leadership, the Free State reclaimed its top spot in the National Senior Certificate examination results in 2019 and has maintained it to date. “This would not have been possible without the leadership of MEC Makgoe; we salute him for the significant role he played, and for his contribution to the success of the province over the past few years,” said Prof Petersen.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept