Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 March 2023 | Story Kekeletso Takang and Lacea Loader | Photo UFS Photo Archive
Tate_Makgoe
Tate Makgoe, late MEC of Education in the Free State.

The management of the University of the Free State (UFS) is shocked and saddened to learn of the untimely passing of Tate Makgoe, member of the Executive Council (MEC) for Education in the Free State, who passed away on Sunday 5 March 2023 after a car accident.

MEC Makgoe was a UFS Council member as representative of the Free State Premier for two terms, from 1 November 2010 to 31 December 2018. He was also a member of the Executive Committee of Council in his second term.

“On behalf of the UFS Council, the university management, and the university community, I would like to express our heartfelt condolences to MEC Makgoe’s family, Premier Mxolisi Dukwana, and the Executive Council of the Free State, as well as the Free State education sector at large, for the loss of a great leader,” said Prof Francis Petersen, UFS Rector and Vice-Chancellor.  

MEC Makgoe had a strong relationship with the UFS, which saw him collaborating on numerous projects, including the Internet Broadcast Project from 2012 to 2022, which was aimed at supporting Grade 12 learners and teachers.

Prof Petersen acknowledged MEC Makgoe for his contributions to the university, the institution’s Council, and the province’s education sector. “We are proud to have been associated with MEC Makgoe. Not only in his capacity as MEC, but also as alumnus. He held an Honours degree in Commerce from the UFS and was registered for a PhD in Education Leadership and Policy Studies at the university at the time of his passing. In 2013, he received a Cum Laude Award during the Chancellor's Distinguished Alumni Awards ceremony,” said Prof Petersen.

Through continued collaboration and under his leadership, the Free State reclaimed its top spot in the National Senior Certificate examination results in 2019 and has maintained it to date. “This would not have been possible without the leadership of MEC Makgoe; we salute him for the significant role he played, and for his contribution to the success of the province over the past few years,” said Prof Petersen.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept