Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 May 2023 | Story Leonie Bolleurs | Photo Supplied
Eco-vehicle Race
Join the UFS on 13 May 2023 at 09:00 (student performances at 09:00 and race at 10:15) on the road around the UFS Odeion School of Music for the annual Kovsie ACT Eco-Vehicle Race. Don't miss out on this incredible display of endurance; support your favourite team to victory!

Kovsie ACT at the University of the Free State (UFS) is presenting the sixth Kovsie Eco-Vehicle Race this year.

Come and show your support for our students who will be representing our colleges and three campuses, along with the Central University of Technology. Be a part of the action:

Date: Saturday 13 May 2023
Time: 09:00 Performances by student artists
Time: 10:15 Official start of Eco-Vehicle Race
Venue: UFS Odeion School of Music parking area

The Eco-Vehicle Race represents the last phase of a nine-month co-curricular skills programme, providing our students with a set of skills that prepare them for the world of work. 

In this programme where students are equipped with basic knowledge and skills on sustainable energy, they get the opportunity not only to race the eco-vehicles, but to also understand the workings of the vehicle, which is critical for repairs done by the team during the race. 

Our students will be competing in three events:

  • Obstacle course: Teams will be challenged by obstacles to test their control over the car.
  • Smart lap: A timed lap in which the drivers take the main track for the first time.
  • Endurance race: The teams need to finish as many laps as possible using the least amount of energy in 45 minutes. 
The winners of the three events will each receive a trophy. There will be a trophy for the best pit stop as well as a spirit cup for the team with the best energy and support from the audience.

Come and support our students as they showcase their ingenuity and endurance. Don't miss out on the action! For more information, click here to contact Jady Carelse.

Car manufacturers will also exhibit hybrid/electric vehicles; come and view the exhibition and learn more about how these cars work and their benefits.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept