Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 May 2023 | Story André Damons | Photo International Council of Nurses
Our Nurses Our Future - International Council of Nurses
International Nurses Day is celebrated around the world on May 12, the anniversary of the birthday of Florence Nightingale. The theme for the 2023 celebration is: Our Nurses. Our Future.

The School of Nursing at the University of the Free State (UFS) will be celebrating International Nurses Day on 12 May 2023, commemorating the anniversary of the birth of Florence Nightingale, the founder of modern-day nursing. The theme for this year’s celebration day is: “Our Nurses. Our Future” as announced by the International Council of Nurses (ICN). The theme of the international global campaign focuses on nursing in the future in order to address global health challenges and improve global health for all.

Nurses are on the frontline, and are pillars of health care systems, spending 24 hours with patients. The future of the nursing profession is mainly dependent on the quality of education offered by nursing education institutions. The School of Nursing trains nurses as clinical specialists and researchers to improve quality patient care.

“The sacrifices and selfless work done by the nurses during the pandemic displays the values of their contribution towards the health of the society. Thus, protection, support and respect for nurses should be promoted to retain and invest in them. The school believes it is not too late for the lessons learnt from the COVID-19 pandemic to be translated into actions for the future, which is the core message of the theme by ICN for 2023,” says Dr Jeanette Sebaeng, Head of the School of Nursing.

Day of activities

In joining the world to celebrate Nurses Day, the school has invited stakeholders and partners in health from both the public and private sectors. The audience will be addressed by among others Prof Mokgadi Matlakala, the Academic Chairperson of the Department of Health Studies at UNISA and the Deputy Chairperson of the Forum for University Deans in South Africa (FUNDISA). There will be several activities taking place during the day that include the Amazing Race, outdoor events, and a tree-planting to commemorate those nurses who lost their lives during the pandemic. It also aims to envision the future of nursing.

The outdoor activities will be held concurrently with the main event from 9:00 to 13:00, with stalls portraying nursing services in various contexts, for example, at private hospitals, Kovsies and in the community. Those who wish to donate blood can visit the South African National Blood Services stall. Basic screening tests such as blood pressure and blood glucose checks will be provided for free to the university community.

The Amazing Race will be held at 10:00, starting at the Amphitheatre above the Equitas parking area, where teams of four stand a chance to win prizes. All students on campus may take part in the competition. The link below can be used by teams who want enter:

Click to view documentENTER

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept