Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 May 2023 | Story Lunga Luthuli | Photo Supplied
Juanita
As a member of the USAf Leadership Management Strategy Group, Juanita Burjins will help member universities and other key role players with their leadership and management development needs.

Juanita Burjins, Head: Leadership and Development in the Department of Human Resources at the University of the Free State, was recently appointed as a member of the Universities South Africa’s Leadership Management Strategy Group (LMSG). The appointment to the group in April 2023 is a testament and a recognition of Burjin’s leadership and expertise, not only in the field of human resources but also in the higher education sector.

The LMSG is responsible for initiating activities that would allow it to develop evidence-based influences on the work of Higher Education Learner Management (HELM), and to advise the board on the programmatic direction of HELM, including its financial sustainability and identifying opportunities for the growth and expansion of its post-school education and training.

As a member of the USAf Leadership Management Strategy Group – a position Burjins will hold for three years – she will contribute and provide strategic advice to the USAf Board, the Chief Executive, and the Director of Higher Education Leadership and Management, regarding planning, implementation, and monitoring. 

Burjins said: “I was nominated by the Skills Development Facilitators Forum; in the group, I will be responsible for engagement and alignment with member universities and other key role players in terms of their leadership and management development needs.”  

Beaming with pride, Burjins is looking forward to “working with a group of expert leaders within the higher education sector and contributing to enabling and empowering learning opportunities”. 

“I am proud that I could represent the University of the Free State in this capacity and contribute to the stability and effectiveness of institutional leadership and management in the higher education sector. With the opportunity, I am also looking forward to providing strategic advice, advocacy, and tactical programme management support for HELM, and identifying potential national and regional collaborations and partnerships with other universities,” added Burjins.

Burjins believes it is important to have the USAf Leadership Management Strategy Group in higher education, as it provides ‘strategic advice to the USAf Board on the planning, implementation, and monitoring of HELM for the engagement and alignment of member universities in terms of the leadership and development needs as well as the relevance and responsiveness of programme offering and other services in leadership and development.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept