Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 May 2023 | Story Lunga Luthuli | Photo Supplied
Juanita
As a member of the USAf Leadership Management Strategy Group, Juanita Burjins will help member universities and other key role players with their leadership and management development needs.

Juanita Burjins, Head: Leadership and Development in the Department of Human Resources at the University of the Free State, was recently appointed as a member of the Universities South Africa’s Leadership Management Strategy Group (LMSG). The appointment to the group in April 2023 is a testament and a recognition of Burjin’s leadership and expertise, not only in the field of human resources but also in the higher education sector.

The LMSG is responsible for initiating activities that would allow it to develop evidence-based influences on the work of Higher Education Learner Management (HELM), and to advise the board on the programmatic direction of HELM, including its financial sustainability and identifying opportunities for the growth and expansion of its post-school education and training.

As a member of the USAf Leadership Management Strategy Group – a position Burjins will hold for three years – she will contribute and provide strategic advice to the USAf Board, the Chief Executive, and the Director of Higher Education Leadership and Management, regarding planning, implementation, and monitoring. 

Burjins said: “I was nominated by the Skills Development Facilitators Forum; in the group, I will be responsible for engagement and alignment with member universities and other key role players in terms of their leadership and management development needs.”  

Beaming with pride, Burjins is looking forward to “working with a group of expert leaders within the higher education sector and contributing to enabling and empowering learning opportunities”. 

“I am proud that I could represent the University of the Free State in this capacity and contribute to the stability and effectiveness of institutional leadership and management in the higher education sector. With the opportunity, I am also looking forward to providing strategic advice, advocacy, and tactical programme management support for HELM, and identifying potential national and regional collaborations and partnerships with other universities,” added Burjins.

Burjins believes it is important to have the USAf Leadership Management Strategy Group in higher education, as it provides ‘strategic advice to the USAf Board on the planning, implementation, and monitoring of HELM for the engagement and alignment of member universities in terms of the leadership and development needs as well as the relevance and responsiveness of programme offering and other services in leadership and development.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept