Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 May 2023 | Story Dr Mpumelelo Ncube | Photo Supplied
Dr Mpumelelo Ncube
Dr Mpumelelo Ncube is a Senior Lecturer in the Department of Social Work, University of the Free State.


Opinion article by Dr Mpumelelo Ncube, Head of Department and Senior Lecturer in the Department of Social Work, University of the Free State.


The year 2023 marks the diamond jubilee of the establishment of the Organisation of African Unity (OAU), currently known as the African Union (AU), which was founded in Addis Ababa. The visionary founders, including President Kwame Nkrumah and Emperor Haile Selassie, aimed to bring about political change in African states and restore the dignity of African people, who had long suffered under colonial subjugation and disenfranchisement. Their vision encompassed a united Africa, free from oppression, governed by self-determination, and destined for prosperity.

Over time, the OAU transformed into the AU, with the intention of accelerating the dream of African unity and eradicating the social, political, and economic challenges that had begun to define African states. Pan-Africanism emerged as a beacon of hope, inspiring many who understood its significance at the organisation's inception. As we reflect on the ideals cherished by the founding fathers and reaffirmed by their successors in 2002, it is crucial to contemplate four of the seventeen aims articulated during the launch of the African Union in Durban.

Unity and solidarity between African countries and their people

Firstly, the AU aims to achieve greater unity and solidarity between African countries and their people. In pursuit of this goal, notable actions have been taken, such as the establishment of the Peace and Security Council (PSC) to maintain peace in conflict zones such as Mali, Sudan, Somalia, and the Central African Republic. Moreover, in response to the COVID-19 pandemic, the AU set up the Africa Medical Supplies Platform (AMSP) to facilitate the procurement and distribution of medical equipment and supplies throughout the continent. While these achievements are commendable, the majority of the other intentions under this aim lack a concrete plan of action, and the lack of sufficient funding is hampering progress. This presents a cause for concern.

Secondly, the AU pledged to defend the sovereignty, territorial integrity, and independence of its member states. Despite the development of intervention instruments to support this aim, the organisation has been found wanting at critical junctures. One cannot forget the adoption of Resolution 1973 by the United Nations Security Council, which authorised national governments or regional organisations to impose a no-fly zone in Libya, ultimately leading to the assassination of Colonel Muammar Gaddafi. Colonel Gadhafi played a pivotal role in the formation of the African Union and declared his vision for the United States of Africa with a single government and one currency. Surprisingly, three AU member states – South Africa, Nigeria, and Gabon – voted in favour of this resolution. Their actions raised doubts about their commitment to defending the sovereignty, territorial integrity, and independence of the AU.

Africa faces a harsh reality

Africa, a continent with immense potential for growth and development, faces a harsh reality that cannot be ignored. Its burgeoning population holds great promise for contributing significantly to its advancement. Additionally, Africa is blessed with abundant mineral resources, the prudent management of which could sustain the developmental aspirations of its people. Furthermore, Africa's expansive land mass and diverse climate present valuable opportunities to address crucial concerns such as food and energy security. It is perplexing that Africa, a continent three times the size of the United States of America, continues to lag behind in all aspects of development. The continent has enormous potential to foster growth and development and to compete on a global scale. Regrettably, it has thus far failed to harness this potential, leaving the dream of African prosperity, initially envisioned by the founders of the OAU (AU) and their successors, frustratingly out of reach.

As we commemorate the diamond jubilee of the OAU's establishment, let it serve as a reminder of the vision and determination of its founders. Their dreams for an Africa united, free from oppression, and governed by self-determination still resonate today. It is our collective responsibility to ensure that these dreams are no longer scuppered, but rather transformed into a vibrant reality of African prosperity.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept