Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2023 | Story André Damons | Photo Supplied
Powerstation
South Africa is facing increasing water stress due to a variety of factors.

South Africa, like the rest of Africa, is facing increasing water stress due to a variety of factors, including inadequate maintenance and investment in water and sanitation infrastructure, unequal access to water, poor water quality, and increasingly unsustainable water demand. Flooding and drought disasters and disruptions in water and sanitation services have become more frequent in recent years amidst a growing population in a semi-arid country.

In addition to the ongoing load shedding crisis we are facing, South Africa is rapidly approaching a situation where “water shedding” is becoming a tangible issue. Although it hasn’t reached a nationwide scale yet, the occurrence of disruptions in water supply systems due to shortages and a combination of other factors is growing significantly.

This situation is detrimental, not only to South Africa’s developmental goals but also to its socio-economic position within the Southern African development community region and the continent as a whole.

This is according to academics from the University of the Free State (UFS) and the University of Pretoria (UP) who were part of a group of academics and industry experts who did an independent assessment of Operation Vulindlela’s impact on South Africa. Pres Cyril Ramaphosa unveiled Operation Vulindlela – a joint initiative of the Presidency and National Treasury that aims to modernise and transform network industries – in 2020 as the vehicle to “fast-track the delivery of economic reforms”.

Prof Paul Oberholster, Director of the UFS Centre for Environmental Management and an expert in wastewater treatment, and Dr Yolandi Schoeman, his Postdoctoral Fellow, together with Prof Emma Archer, Professor in Geography and Environmental Studies at the University of Pretoria were asked by Rand Merchant Bank (RMB) to focus on water.

Bring about the structural change

RMB states in the report that it commissioned a body of work by academics and industry experts to independently evaluate whether the execution of policy initiatives set out by Operation Vulindlela, would bring about the structural change that is necessary to accelerate SA’s growth and employment. The subsequent parts of this report focus on three of the five network industries identified by Operation Vulindlela – electricity, water and transport (ports and rail).

“It was an honour to have been part of this project with RMB and to unpack and strategically assess the water sector in South Africa. We know that there are plenty of challenges, but there are also remarkable opportunities where we can implement solutions and demonstrate impact, bring about change and work hard in turning the situation around as a joint constructive collaborative approach.

“They are very keen on working with leaders in the water space with qualities of strategic thinking, innovation, collaboration, inclusivity, and a strong commitment to sustainable development. It is an impactful contribution indeed,” says Prof Oberholster.

In their sections of the report, under heading South Africa's Blue Revolution: Investing in a thriving water future South Africa, Prof Oberholster, Dr Schoeman and Prof Archer, focused on five themes, namely Water for planetary health, Water for development, Water for climate, resilience and the environment, Water for cooperation and The Water Decade of Action.

“We were asked to evaluate the viability of what is still left to be done in the water sector in South Africa. We were asked to contribute our thinking to the RMB handbook for the purpose of distribution to corporate and institutional clients. As part of our outcome we provided clear and unbiased direction to RMB’s clients on the joint initiative the likely impact of Operation Vulindlela on economic growth and what still needs to be done to turn the water sector around,” according to Prof Oberholster.

Guidelines to improve the country’s water situation

He says their aim was to give guidelines on how to improve the country’s water situation. He believes the work they have done with this assessment and on other occasions, will help the UFS in its goal to be a university that impactfully supports societal development as set out in Vision 130, which states: Our knowledge will continue to contribute to the development of the Free State, South Africa, and the African continent and to advance global knowledge and understanding.

As clean water and sanitation is Goal 6 of the 17 Sustainable Development Goals (SDGs), it is a further indication of the importance of this research and work.

According to Dr Schoeman, reports like these are important because they help raise awareness of the challenges and opportunities for achieving water security and sustainable development. They identify problems and bottlenecks within the industry, helping to target areas that require immediate attention and action. They provide potential solutions and enable dialogue to the problems identified, giving stakeholders a roadmap for action and providing essential background that can enable investment and further inform investment priorities.

“Such reports help to inform planning and decision-making processes by providing data, evidence, and recommendations based on research and analysis.  They encourage collaboration and coordination among stakeholders by providing a common understanding of the issues and potential solutions.

“They also provide guidance and recommendations for decision-makers to improve water resources management and governance. Water is a vital resource for human health, food security, energy production, environmental protection and more, so it is essential to recognise its worth and incorporate it into planning and policies,” says Dr Schoeman.

Blue Revolution

The academics also talks about the Blue Revolution – essential blue solutions – in supporting Operation Vulindlela which can enable a sustainable future for South Africa's water management system. The Blue Revolution in South Africa, write the academics, refers to a comprehensive strategy and functional implementation for modernising and transforming the country’s water sector. It aims to improve water management practices and enhance the water sector’s overall efficiency, effectiveness, and sustainability in enabling planetary health.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept