Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2023 | Story André Damons | Photo Supplied
Powerstation
South Africa is facing increasing water stress due to a variety of factors.

South Africa, like the rest of Africa, is facing increasing water stress due to a variety of factors, including inadequate maintenance and investment in water and sanitation infrastructure, unequal access to water, poor water quality, and increasingly unsustainable water demand. Flooding and drought disasters and disruptions in water and sanitation services have become more frequent in recent years amidst a growing population in a semi-arid country.

In addition to the ongoing load shedding crisis we are facing, South Africa is rapidly approaching a situation where “water shedding” is becoming a tangible issue. Although it hasn’t reached a nationwide scale yet, the occurrence of disruptions in water supply systems due to shortages and a combination of other factors is growing significantly.

This situation is detrimental, not only to South Africa’s developmental goals but also to its socio-economic position within the Southern African development community region and the continent as a whole.

This is according to academics from the University of the Free State (UFS) and the University of Pretoria (UP) who were part of a group of academics and industry experts who did an independent assessment of Operation Vulindlela’s impact on South Africa. Pres Cyril Ramaphosa unveiled Operation Vulindlela – a joint initiative of the Presidency and National Treasury that aims to modernise and transform network industries – in 2020 as the vehicle to “fast-track the delivery of economic reforms”.

Prof Paul Oberholster, Director of the UFS Centre for Environmental Management and an expert in wastewater treatment, and Dr Yolandi Schoeman, his Postdoctoral Fellow, together with Prof Emma Archer, Professor in Geography and Environmental Studies at the University of Pretoria were asked by Rand Merchant Bank (RMB) to focus on water.

Bring about the structural change

RMB states in the report that it commissioned a body of work by academics and industry experts to independently evaluate whether the execution of policy initiatives set out by Operation Vulindlela, would bring about the structural change that is necessary to accelerate SA’s growth and employment. The subsequent parts of this report focus on three of the five network industries identified by Operation Vulindlela – electricity, water and transport (ports and rail).

“It was an honour to have been part of this project with RMB and to unpack and strategically assess the water sector in South Africa. We know that there are plenty of challenges, but there are also remarkable opportunities where we can implement solutions and demonstrate impact, bring about change and work hard in turning the situation around as a joint constructive collaborative approach.

“They are very keen on working with leaders in the water space with qualities of strategic thinking, innovation, collaboration, inclusivity, and a strong commitment to sustainable development. It is an impactful contribution indeed,” says Prof Oberholster.

In their sections of the report, under heading South Africa's Blue Revolution: Investing in a thriving water future South Africa, Prof Oberholster, Dr Schoeman and Prof Archer, focused on five themes, namely Water for planetary health, Water for development, Water for climate, resilience and the environment, Water for cooperation and The Water Decade of Action.

“We were asked to evaluate the viability of what is still left to be done in the water sector in South Africa. We were asked to contribute our thinking to the RMB handbook for the purpose of distribution to corporate and institutional clients. As part of our outcome we provided clear and unbiased direction to RMB’s clients on the joint initiative the likely impact of Operation Vulindlela on economic growth and what still needs to be done to turn the water sector around,” according to Prof Oberholster.

Guidelines to improve the country’s water situation

He says their aim was to give guidelines on how to improve the country’s water situation. He believes the work they have done with this assessment and on other occasions, will help the UFS in its goal to be a university that impactfully supports societal development as set out in Vision 130, which states: Our knowledge will continue to contribute to the development of the Free State, South Africa, and the African continent and to advance global knowledge and understanding.

As clean water and sanitation is Goal 6 of the 17 Sustainable Development Goals (SDGs), it is a further indication of the importance of this research and work.

According to Dr Schoeman, reports like these are important because they help raise awareness of the challenges and opportunities for achieving water security and sustainable development. They identify problems and bottlenecks within the industry, helping to target areas that require immediate attention and action. They provide potential solutions and enable dialogue to the problems identified, giving stakeholders a roadmap for action and providing essential background that can enable investment and further inform investment priorities.

“Such reports help to inform planning and decision-making processes by providing data, evidence, and recommendations based on research and analysis.  They encourage collaboration and coordination among stakeholders by providing a common understanding of the issues and potential solutions.

“They also provide guidance and recommendations for decision-makers to improve water resources management and governance. Water is a vital resource for human health, food security, energy production, environmental protection and more, so it is essential to recognise its worth and incorporate it into planning and policies,” says Dr Schoeman.

Blue Revolution

The academics also talks about the Blue Revolution – essential blue solutions – in supporting Operation Vulindlela which can enable a sustainable future for South Africa's water management system. The Blue Revolution in South Africa, write the academics, refers to a comprehensive strategy and functional implementation for modernising and transforming the country’s water sector. It aims to improve water management practices and enhance the water sector’s overall efficiency, effectiveness, and sustainability in enabling planetary health.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept