Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2023 | Story André Damons | Photo Supplied
Powerstation
South Africa is facing increasing water stress due to a variety of factors.

South Africa, like the rest of Africa, is facing increasing water stress due to a variety of factors, including inadequate maintenance and investment in water and sanitation infrastructure, unequal access to water, poor water quality, and increasingly unsustainable water demand. Flooding and drought disasters and disruptions in water and sanitation services have become more frequent in recent years amidst a growing population in a semi-arid country.

In addition to the ongoing load shedding crisis we are facing, South Africa is rapidly approaching a situation where “water shedding” is becoming a tangible issue. Although it hasn’t reached a nationwide scale yet, the occurrence of disruptions in water supply systems due to shortages and a combination of other factors is growing significantly.

This situation is detrimental, not only to South Africa’s developmental goals but also to its socio-economic position within the Southern African development community region and the continent as a whole.

This is according to academics from the University of the Free State (UFS) and the University of Pretoria (UP) who were part of a group of academics and industry experts who did an independent assessment of Operation Vulindlela’s impact on South Africa. Pres Cyril Ramaphosa unveiled Operation Vulindlela – a joint initiative of the Presidency and National Treasury that aims to modernise and transform network industries – in 2020 as the vehicle to “fast-track the delivery of economic reforms”.

Prof Paul Oberholster, Director of the UFS Centre for Environmental Management and an expert in wastewater treatment, and Dr Yolandi Schoeman, his Postdoctoral Fellow, together with Prof Emma Archer, Professor in Geography and Environmental Studies at the University of Pretoria were asked by Rand Merchant Bank (RMB) to focus on water.

Bring about the structural change

RMB states in the report that it commissioned a body of work by academics and industry experts to independently evaluate whether the execution of policy initiatives set out by Operation Vulindlela, would bring about the structural change that is necessary to accelerate SA’s growth and employment. The subsequent parts of this report focus on three of the five network industries identified by Operation Vulindlela – electricity, water and transport (ports and rail).

“It was an honour to have been part of this project with RMB and to unpack and strategically assess the water sector in South Africa. We know that there are plenty of challenges, but there are also remarkable opportunities where we can implement solutions and demonstrate impact, bring about change and work hard in turning the situation around as a joint constructive collaborative approach.

“They are very keen on working with leaders in the water space with qualities of strategic thinking, innovation, collaboration, inclusivity, and a strong commitment to sustainable development. It is an impactful contribution indeed,” says Prof Oberholster.

In their sections of the report, under heading South Africa's Blue Revolution: Investing in a thriving water future South Africa, Prof Oberholster, Dr Schoeman and Prof Archer, focused on five themes, namely Water for planetary health, Water for development, Water for climate, resilience and the environment, Water for cooperation and The Water Decade of Action.

“We were asked to evaluate the viability of what is still left to be done in the water sector in South Africa. We were asked to contribute our thinking to the RMB handbook for the purpose of distribution to corporate and institutional clients. As part of our outcome we provided clear and unbiased direction to RMB’s clients on the joint initiative the likely impact of Operation Vulindlela on economic growth and what still needs to be done to turn the water sector around,” according to Prof Oberholster.

Guidelines to improve the country’s water situation

He says their aim was to give guidelines on how to improve the country’s water situation. He believes the work they have done with this assessment and on other occasions, will help the UFS in its goal to be a university that impactfully supports societal development as set out in Vision 130, which states: Our knowledge will continue to contribute to the development of the Free State, South Africa, and the African continent and to advance global knowledge and understanding.

As clean water and sanitation is Goal 6 of the 17 Sustainable Development Goals (SDGs), it is a further indication of the importance of this research and work.

According to Dr Schoeman, reports like these are important because they help raise awareness of the challenges and opportunities for achieving water security and sustainable development. They identify problems and bottlenecks within the industry, helping to target areas that require immediate attention and action. They provide potential solutions and enable dialogue to the problems identified, giving stakeholders a roadmap for action and providing essential background that can enable investment and further inform investment priorities.

“Such reports help to inform planning and decision-making processes by providing data, evidence, and recommendations based on research and analysis.  They encourage collaboration and coordination among stakeholders by providing a common understanding of the issues and potential solutions.

“They also provide guidance and recommendations for decision-makers to improve water resources management and governance. Water is a vital resource for human health, food security, energy production, environmental protection and more, so it is essential to recognise its worth and incorporate it into planning and policies,” says Dr Schoeman.

Blue Revolution

The academics also talks about the Blue Revolution – essential blue solutions – in supporting Operation Vulindlela which can enable a sustainable future for South Africa's water management system. The Blue Revolution in South Africa, write the academics, refers to a comprehensive strategy and functional implementation for modernising and transforming the country’s water sector. It aims to improve water management practices and enhance the water sector’s overall efficiency, effectiveness, and sustainability in enabling planetary health.

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept