Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 May 2023 | Story Samkelo Fetile | Photo iFlair Photography
Modular Lecture Building
The Modular Lecture Building on the UFS’s Bloemfontein Campus.

The University of the Free State’s (UFS) Modular Lecture Building on its Bloemfontein Campus recently received a National Merit Award from the South African Institute of Architects (SAIA). The awards were announced at the 2021/2022 Corobrik SAIA Awards of Merit and Awards for Excellence ceremony in Johannesburg.

The multi-functional Modular Lecture Building, considered a hub for innovative learning, was designed by Roodt Architects in partnership with GXY Architects.

The adjudication panel received a total of 42 architectural projects from around the country, including infrastructure developments in the public and private sector. The SAIA Awards programme is structured over a two-year period and is conducted in two stages. In stage one regional awards for architecture are presented by the nine regional institutes affiliated to SAIA. In stage two the winning regional projects that are consequently entered into the national awards receive either a Commendation, an Award of Merit, and/or an Award for Excellence, which recognises exceptional achievement in the field of architecture.

In their citation the adjudicators noted that the Modular Lecture Building sets a benchmark for rational planning and technical efficiency and helps complete the campus urban framework through its placing and material choices.

Multi-functional spaces for students

Nico Janse van Rensburg, Senior Director at UFS University Estates, said the recognition is a testament to the UFS’s aspirations to renew, rejuvenate, regenerate, and revisit facilities and infrastructure.

“This award proves that excellence can be achieved with a reasonable set budget,” Janse van Rensburg said. “Energy efficiency and green building principles can be achieved by careful planning and teamwork.”

The Modular Lecture Building offers a variety of much-needed flexible teaching and learning spaces. “I have been using the facilities in this building for two years now, and I can say the building is much more spacious and conducive to studying,” said Hymne Spies, a third-year BSc student majoring in biochemistry and genetics. “The many plugs make it more efficient for studying, as one can plug in his or her laptop. There is also a nice computer lab for us to make use of.”

The UFS is proud that the construction of this facility forms part of a bigger endeavour – to create a cohesive campus identity that improves core business and to further extend its innovation and excellence as per its Vision 130.

Take a tour of the new Modular Lecturing Space and Assessment Centre Building:

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept