Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 November 2023 | Story Michelle Nöthling | Photo Andile Andries Ndlovu
Nelisiwe Vilakazi and Abigail Webb
Nelisiwe Vilakazi (Head of Department for Social Development: KZN) and Abigail Webb during the ASASWEI International Conference and Awards 2023.

In a remarkable feat, Abigail ‘Zinhle’ Webb has clinched the prestigious Best Student Achievement Award from the Association of South African Social Work Education Institutions (ASASWEI), standing out among the nation's top-ranking students. This accolade, beyond acknowledging academic prowess, demands a notable contribution to the community – a criterion Abigail undeniably fulfils.

Elizabeth Msadu, Assistant Director of Student Counselling and Development and Abigail’s supervisor during her final year in Social Work at the University of the Free State (UFS) commends Abigail for  “her passion, integrity, high standards, and perhaps most of all, how selflessly she strives to improve the lives of the students around her.” 

Community engagement: breaking taboos

Abigail's success is not confined to academic excellence; her proactive approach to community issues is equally commendable. Observing the free condom container in her residence bathroom one day, she questioned the absence of support for female students regarding sanitary products. She found that “there is still immense shame around vaginal health.” This led to the initiation of workshops and the #comebleedwithusperiod social media challenge, normalising discussions around women’s menstrual health.

During her tenure on Akasia’s Residence Committee and as Prime this year, Abigail identified a reluctance among female students to assume leadership roles. Questioning this disparity, she launched a project aimed at addressing female apprehension surrounding leadership and failure. Through this initiative, Abigail empowered female students to embrace leadership positions and overcome societal expectations. 

Future plans: a commitment to growth

While Abigail is drawn to child and family services, and adoption work, she plans to gain practical experience before pursuing a Master’s degree. Inspired by the researchers she encountered at the ASASWEI conference and award ceremony, she expresses her newfound interest in research, envisioning a future where she actively contributes to the field.

Time well spent: reflecting on four years

Reflecting on her proudest achievements she said, “I think I’m most proud that I spent my time well. I lived to my fullest during my four years of study.” Recognising the crucial role of belonging in student success, she emphasises the significance of forming connections. From a shy, first-year student with a stutter, Abigail evolved into a dynamic force, dedicated to connecting and serving the community. 

As Abigail approaches the end of her studies, she acknowledges the uncertainty of the next step but asserts with confidence, “It’s going to be okay. I’m going to be okay.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept