Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2023 | Story Anthony Mthembu | Photo SUPPLIED
Katherine Swartland
Katherine Swartland, a representative from Allan Gray addressing the delegation at the Allan Gray Achievement Awards, hosted on the UFS’s Bloemfontein Campus.

The Faculty of Economics and Management Sciences (EMS) at the University of the Free State (UFS), in collaboration with Allan Gray, proudly hosted the annual Allan Gray Achievement Awards on 11 October 2023. This special event, held at the Awela Restaurant on the UFS’s Bloemfontein campus, was designed to celebrate the academic achievements of top-performing students within the faculty, recognising their excellence based on their year of study. 

The award ceremony was attended by distinguished members of the EMS Faculty, the Commercio Students Association, and a delegation from Allan Gray, including Katherine Swartland, Managing Business Analyst, Yonela Makalima, Business Analyst, and Steven Motloung, Manager. The evening's guest speaker was Liz Letsoalo, a renowned entrepreneur and TEDx speaker. Notably, this ceremony marked a significant return to in-person events since the outbreak of the COVID-19 pandemic, and Katherine Swartland, who served as the programme director, described this resurgence as truly exciting. 

The award winners

The Allan Gray Achievement Awards highlighted outstanding students from various year levels. In the second-year category, Modisaotsile Seekoei received a prestigious award of R5 000 along with a Thule backpack, while Melissa Mlotshwa was granted a prize of R3 000. Among the third-year students, Anthea Ralane was recognised with an award of R8 000 and a Thule backpack, and Modiehi Mpakathe was the recipient of a R5 000 prize. In the fourth-year category, Kelebogile Motlhanke earned a remarkable R12 000 reward and a Thule backpack, and Rykers Lues was presented with a prize worth R8 000. 

Although not all students attending the ceremony received awards, Prof Brownhilder Neneh, the Vice Dean for Research Engagement and Internationalisation, aptly reminded the audience, ’It is important to recognise that each of you here is already a winner, as your presence signifies that you are among the top achievers in your field. You have demonstrated that with passion, perseverance, and a commitment to your goals, there are no limits to what you can accomplish.’’ 

A longstanding relationship

The Allan Gray Achievement Awards holds deep roots in a special relationship between the UFS and Allan Gray. Swartland noted that this initiative was founded by Faizil Jakoet, an executive at Allan Gray, and the awards ceremony, in part, celebrates the continued partnership between the UFS and Allan Gray. This enduring relationship has thrived for over a decade, despite changes in leadership, creating opportunities for meaningful engagement between Allan Gray and UFS students. Swartland further emphasised the importance of this bond, saying, ‘’Another special relationship is formed every time we visit the UFS, between us and you, a lot of exceptional students.” 

As the event approached its conclusion, the audience had the privilege of hearing from guest speaker Liz Letsoalo, Founder of Masodi Organics, a prominent beauty and wellness brand. Letsoalo’s address centered on the ‘practicality of creating’, encouraging students to view themselves as creators, allowing them to pivot and adapt as their aspirations evolve. She urged students to stay dedicated to their dreams, emphasising that taking necessary actions and persevering is essential to turning their dreams into reality.

The Allan Gray Achievement Awards signify the remarkable achievements and potential of the UFS EMS Faculty students. This event not only celebrates academic excellence, but also reinforces the enduring partnership between the University of the Free State and Allan Gray, paving the way for further opportunities and engagement.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept