Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2023 | Story Anthony Mthembu | Photo Anthony Mthembu and Reabetswe Parkies
EMS Faculty hosts Inaugural Debate in Broadening Curricular Debate series
Carnegie Math Pathways Team- From left to right: Dr Andre Freeman; Chair of the Mathematics Department at Capital Community College, Karon Klipple; Lecturer at the University of New Mexico, Annari Muller; Chairperson of the Learning, Teaching and Digitisation Committee (UFS), Lewis Hosie; Director of Development and Implementation for the Carnegie Math Pathways, Haley McNamara; Research Associate at the Carnegie Math Pathways and Dan Ray; Operations Director for the Carnegie Math Pathways.

The Economics and Management Sciences (EMS) Faculty at the University of the Free State (UFS) recently inaugurated its first Broadening Curricular Debate series, a concept conceived by the Dean of the Faculty, Prof Phillipe Burger. The inaugural debate, held on 22 November 2023 in the Equitas Senate Hall on the UFS Bloemfontein Campus, marked the beginning of a series designed to facilitate discussions among academics on crucial higher education matters.  Annari Muller, Chairperson of the Learning, Teaching and Digitisation Committee (LTDC), expressed the series’ purpose: “We organised this debate series to provide a platform for academics to discuss vital higher education matters. These sessions aim to stimulate critical conversations that empower UFS staff to enrich our curricula, enhance teaching practices, and shape broader educational strategies.’’ 

The motion presented to the house was, ‘The rapid integration of Artificial Intelligence in higher education perpetuates educational inequalities, widens the digital divide, and diminishes the value of personal instruction. The debate followed the structure of Intelligence Squared debates, with two teams comprising UFS staff from diverse departments, including the Department of Business Management, Department of English, Department of Public Management and the Department of Mathematical Statistics and Actuarial Science.

Naquita Fernandes, the Master of the House for the debate, emphasised the deliberate inclusion of members from diverse fields to infuse varied perspectives into the debate. “We believed that this diverse amalgamation of expertise would offer multifaceted insights, ensuring a holistic exploration of the subject matter. The debate structure was meticulously designed to encourage engaging discussions rather than formal academic presentations, allowing for a robust exchange of ideas.’’

The audience had the opportunity to vote on their stance before and after the debate, determining the winning team based on their ability to sway the audience with compelling arguments. The winning team, composed of Dr Hilary Bama (Senior Lecturer in the Department of Business Management), Dr Martin Rossouw (Senior Lecturer in Film and Visual Media), and Dr Rick De Villiers (Senior Lecturer in the English Department), successfully argued against the motion. 

The proposition team highlighted the existing gap between those with access to digital technologies and those without, advocating for a gradual and considered approach to AI integration in higher education. In contrast, the opposition team underscored the value of personal instruction in the face of AI, emphasising AI’s potential to provide constructive and effective feedback,  contribute to adaptive learning platforms, and accommodate unique learning styles and preferences. 

Following the debate, the audience was addressed by a team from Carnegie Math Pathways, providing insights into generative AI tools. Fernandes described the event as a proactive step in shaping the UFS academic landscape, moving away from reactive responses and exploring critical topics and strategies that could influence future policies and practices. 

         EMS Faculty hosts Inaugural Debate in Broadening Curricular Debate series

The Debaters- From left to right: Dr Martin Rossouw; Senior Lecturer in Film and Visual Media, Herkulaas Michael Combrink; Co-Director of Digital Futures, Dr Hilary Bama; Senior Lecturer in the EMS Faculty, Dr Rick De Villiers; Lecturer in the Department of English, Dr Michele Von Maltitz; Senior Lecturer in the Department of Mathematical Statistics and Actuarial Science, and Nkosingiphile Emmanuel Mkhize; Lecturer and Researcher in the Department of Public Management. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept