Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 November 2023 | Story NITHA RAMNATH | Photo SUPPLIED
Is AI the future of research? Experiences of co-authoring a book with machine-generated summaries

The University of the Free State (UFS) is pleased to invite you to an online public lecture that will be presented by Prof Hussein Solomon, Senior Professor of Gender and Africa Studies at the UFS. Prof Emma Ruttkamp-Bloem, Head of the Department of Philosophy at the University of Pretoria (UP), will respond. 

Lecture description: Is AI the future of research? Experiences of co-authoring a book with machine-generated summaries.

The world is undergoing tectonic technological shifts that hold grave challenges to societies, universities, and researchers. For any researcher, the persistent challenge is to negotiate a plethora of different sources on the subject, which could be overwhelming. AI could be one means to facilitate the process of research. This, however, raises ethical questions as to the originality of research, issues of plagiarism, and the question of the individual researcher’s own intuition as opposed to software-generated prompts. Prof Solomon shares his experiences working on a machine-generated book.

Date:  Monday, 27 November 2023
Time: 14:00-15:30 

 

WATCH: www.ufs.ac.za/Webinar

For further information, contact Alicia Pienaar at pienaaran1@ufs.ac.za.

Speaker:

Prof Solomon is a Professor in the Centre for Gender and Africa Studies at the UFS. His research interests revolve around political Islam and issues of terrorism. His most recent books include African Security in the Anthropocene (with Jude Cocodia, Springer, 2023), The Future of War in Africa (with Eeben Barlow, Amazon Kindle, 2023), Intersectionality and LGBTQI Rights: A Comparative Analysis of Iran, Turkey and Egypt (with Simone Bekker, Nova Publishers, 2023), Directions in International Terrorism: Theories, Trends and Trajectories (Palgrave, 2021), Terrorism in Africa: New Trends and Frontiers (with Glen Segell and Sergey Kostelyanets, Institute for African Studies, Moscow, 2021), and Arab MENA Countries: Vulnerabilities and Constraints Against Democracy on the Eve of the Global COVID-19 Crisis (with Arno Tausch, Springer 2021).

Respondent:

Prof Ruttkamp-Bloem is Professor and Head of the Department of Philosophy at UP, the AI ethics lead at the Centre for AI Research (CAIR), and the chair of the Southern African Conference on AI Research (SACAIR). She is a philosopher of science and technology, an AI ethics policy adviser, a machine ethics researcher, and is an associate editor of the Science and Engineering Ethics journal. Prof Ruttkamp-Bloem led the UNESCO Ad Hoc Expert Group that prepared the draft of the 2021 UNESCO Recommendation on the Ethics of AI, currently assists with implementing the recommendation, and is the current rapporteur for the UNESCO Commission on the Ethics of Scientific Knowledge and Technology (COMEST). Prof Ruttkamp-Bloem has recently been appointed to the AI Advisory Body reporting to the Secretary General of the UN.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept