Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story Prof Matie Hoffman

A decade ago, the former Lamont-Hussey Observatory in Bloemfontein became Southern Africa’s first digital planetarium. Thanks to a collaboration between the University of the Free State (UFS), the Mangaung Metropolitan Municipality, the Department of Science and Innovation, and the Free State Province – as well as donations from trusts, foundations, and businesses – the project has grown and thrived.

Many different shapes, one place

The Naval Hill Planetarium was established in the old Lamont-Hussey Observatory. After the closure of the astronomical observatory, the buildings were refurbished and used by PACOFS as the Observatory Theatre. When the site became available again, it was envisioned to turn it into a planetarium. After many years of hard work, the newly refurbished buildings were opened in 2013 as the Naval Hill Planetarium – the first digital planetarium in Africa south of the Sahara. 

The decade has seen many changes on the site of the former Lamont-Hussey Observatory, founded by the University of Michigan in 1927 to study double stars through the largest refracting telescope in the Southern Hemisphere. Improvements include the conversion of the old telescope building into a modern digital planetarium, the refurbishment of the structure of the old Lamont telescope and its installation as a display outside the old telescope dome, an observing platform, and a new hall for environmental education. The planetarium and the hall are now known as the Centre for Earth and Space, and developments are continuing.

Partners who have supported the project include the American Museum of Natural History (AMNH), the University of Michigan, Old Mutual, Sun International, the Hermann Ohlthaver Trust, ArcelorMittal, the Joan St Leger Lindbergh Charitable Trust, and the CB van Wyk Gesinstrust. In 2022, the Raubex Group and First Technology supported the University of the Free State to upgrade the planetarium’s projection system. Volunteers, including the Friends of the Boyden Observatory and the Naval Hill Planetarium, as well as the Friends of Franklin, have played an invaluable role in supporting and developing this community asset. The planetarium is managed by the Department of Physics at the University of the Free State.

A time to celebrate

During November and December 2023, the planetarium’s first decade will be celebrated with events and special shows, including the South African premier of the AMNH full-dome film, Worlds Beyond Earth. The board of the Southern African Large Telescope (SALT) – the largest single optical telescope in the Southern Hemisphere – will attend the premiere. Many international partners are involved in SALT, and AMNH is one of the shareholders in the SALT Foundation. As part of the partnership between the AMNH and SALT, AMNH provides sponsorship for education and outreach efforts in South Africa. The Naval Hill Planetarium benefits from this initiative and receives content for the planetarium in the form of AMNH full-dome films.

In addition to regular school shows, there will be two public shows every Saturday in November and December – one show in English and one in Afrikaans. In December, there will be additional shows for children. Bookings for shows should be done through Computicket, click here to book. The planetarium can accommodate group bookings and functions (enquiries at +2 51 401 9751 or ficky@ufs.ac.za).

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept