Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story Prof Matie Hoffman

A decade ago, the former Lamont-Hussey Observatory in Bloemfontein became Southern Africa’s first digital planetarium. Thanks to a collaboration between the University of the Free State (UFS), the Mangaung Metropolitan Municipality, the Department of Science and Innovation, and the Free State Province – as well as donations from trusts, foundations, and businesses – the project has grown and thrived.

Many different shapes, one place

The Naval Hill Planetarium was established in the old Lamont-Hussey Observatory. After the closure of the astronomical observatory, the buildings were refurbished and used by PACOFS as the Observatory Theatre. When the site became available again, it was envisioned to turn it into a planetarium. After many years of hard work, the newly refurbished buildings were opened in 2013 as the Naval Hill Planetarium – the first digital planetarium in Africa south of the Sahara. 

The decade has seen many changes on the site of the former Lamont-Hussey Observatory, founded by the University of Michigan in 1927 to study double stars through the largest refracting telescope in the Southern Hemisphere. Improvements include the conversion of the old telescope building into a modern digital planetarium, the refurbishment of the structure of the old Lamont telescope and its installation as a display outside the old telescope dome, an observing platform, and a new hall for environmental education. The planetarium and the hall are now known as the Centre for Earth and Space, and developments are continuing.

Partners who have supported the project include the American Museum of Natural History (AMNH), the University of Michigan, Old Mutual, Sun International, the Hermann Ohlthaver Trust, ArcelorMittal, the Joan St Leger Lindbergh Charitable Trust, and the CB van Wyk Gesinstrust. In 2022, the Raubex Group and First Technology supported the University of the Free State to upgrade the planetarium’s projection system. Volunteers, including the Friends of the Boyden Observatory and the Naval Hill Planetarium, as well as the Friends of Franklin, have played an invaluable role in supporting and developing this community asset. The planetarium is managed by the Department of Physics at the University of the Free State.

A time to celebrate

During November and December 2023, the planetarium’s first decade will be celebrated with events and special shows, including the South African premier of the AMNH full-dome film, Worlds Beyond Earth. The board of the Southern African Large Telescope (SALT) – the largest single optical telescope in the Southern Hemisphere – will attend the premiere. Many international partners are involved in SALT, and AMNH is one of the shareholders in the SALT Foundation. As part of the partnership between the AMNH and SALT, AMNH provides sponsorship for education and outreach efforts in South Africa. The Naval Hill Planetarium benefits from this initiative and receives content for the planetarium in the form of AMNH full-dome films.

In addition to regular school shows, there will be two public shows every Saturday in November and December – one show in English and one in Afrikaans. In December, there will be additional shows for children. Bookings for shows should be done through Computicket, click here to book. The planetarium can accommodate group bookings and functions (enquiries at +2 51 401 9751 or ficky@ufs.ac.za).

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept