Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story André Damons | Photo SUPPLIED
Prof Atangana
Prof Abdon Atangana, a professor of Applied Mathematics at the University of the Free State (UFS), is the highest-ranked UFS scientist included in Stanford University’s World’s Top 2% Scientists list.

A professor of Applied Mathematics at the University of the Free State (UFS) is again the highest-ranked scientist from the institution included in Stanford University’s annual ranking of the top 2% of scientists in the world. 

Prof Abdon Atangana from the UFS’s Institute for Groundwater is ranked number one in applied mathematics, mathematical physics, mathematics, and statistics in the world, and number 260 in all of science, technology, and engineering in the Stanford University World’s Top 2% Scientists list. He is also ranked highest (5 620) of all the UFS scientists included in the career-long data set. 

‘Africans in Africa can impact the world’

“The ranking provides us with the impact of our outputs, and it shows that Africans can contribute to the development of science, technology, engineering, and mathematics while still in Africa,” Prof Atangana said. “This also shows that Africans in Africa can have impact on the world. My motivation is to tell the next generation that Africans do not always need to graduate from the top universities of the global North to make a global impact.  

“We must work hard to make our African universities reach the same level of those from the global North, such that a student from the global North will wish to enroll in our universities. The development of our continent does not rest on sport, music, and so forth alone, but on science, technology, engineering, and mathematics. Having the best scientists, mathematicians, and engineers in the world in Africa should be the strive of all Africans.” 

Three of the UFS’s SARChI Research Chairs have also been included in this list: Prof Hendrik Swart, Chair: Solid-state Luminescent and Advanced Materials (Applied Physics, ranked 40 269 in the single-year dataset); Prof Melanie Walker, Chair: Higher Education and Human Development (ranked 68 337); and Prof Maryke Labuschagne, Chair: Disease Resistance and Quality in Field Crops (Plant Sciences, 165 780).  

Other UFS scientists included in the single-year data set are: Prof John M. Carranza (Geology, 4 837); Prof Muhammad Altaf Khan ( Applied Mathematics, 6 366); Prof Maxim Finkelstein (Statistics/ Mathematical Statistics, 63 394); Prof Marianne Reid (School of Nursing, 72 861); Prof John Owen (Centre for Development Support, 103 368); Prof Brownhilder Neneh (Department of Business Management, 73 635); Prof Jorma Hölsä (Research Fellow: Department of Physics, 88 833); Prof Johann Beukes (Philosophy & Classics, 6 547 764); Rian Venter, (829 709); Dr Yuri Marusik (Zoology and Entomology, 553 619); Prof Robert Schall (Department of Mathematical Statistics and Actuarial Science, 276 681); Prof Deborah Posel (Department of Sociology, 275 535); Dr Vijay Kumar (Physics, 274 541); Dr Abhay Prakash Mishra (Pharmacology, 229 625); Prof RE Kroon (Physics, 226 554); Dr Krishnan Anand (Chemical Pathology, 235 300); Prof Andrew Marston (Chemistry, 147 147); Dr Seda Igret Araz (Applied Mathematics,125 824); Prof Jeanet Conradie (Chemistry, 106 521); Prof Louis Scott (Plant Sciences, 73 874); Prof Johan Grobbelaar (Plant Sciences, 97 722); Prof David Motaung (Physics, 53 553); Dr Samuel Nambile Cumber (Health Systems Research and Development, 555 563). 

Career-long data set 

The Stanford University rankings also include a list of the top 2% of world-class researchers based on citations over their full careers. Scientists are classified into 22 scientific fields and 174 sub-fields. Field- and subfield-specific percentiles are also provided for all scientists with at least five published papers. Career-long data is updated to the end of 2021, and single recent-year data pertain to citations received during calendar year 2021. The selection is based on the top 100 000 scientists by C-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field.

The career-long data set includes the names of:

Prof Carranza (17 466); Prof Scott (55 882); Prof Reid (57 173); Prof Hölsä (64 402); Prof Grobbelaar (71 094); Prof Walker (78 239); Prof Andrew Marston (Chemistry, 84 484); Prof Schall (90 268); HA Snyman (Animal, Wildlife and Grassland Sciences, 96 374); Prof Swart (103 895); Robert WM Frater Cardiovascular Research Centre (111 896); Prof Frederick Kruger (Centre for Environmental Management,117 971); Prof Finkelstein (124 118); Prof Johan Visser (Geology, 125 331); Prof James C du Preez (Biotechnology, 168 841); Prof Posel (172 295); Prof Conradie (178 157); Prof Michael D MacNeil (Dairy and Animal Science, 184 193); Prof Khan (201 101); Prof Owen (262 897). 

“The representation of our researchers from a variety of disciplinary domains in this prestigious ranking, is confirmation of their excellence, impact, and the global esteem they hold. UFS is proud to be a home to scholars in our midst who take us incrementally forward as an institution because of their cutting-edge research,” said Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation. 

  • Prof Atangana has also been shortlisted as one of the finalists for the prestigious Alkebulan Immigrants Impact Awards (AIIA) 2023, in the South African Flag Carrier category. Voting started on 1 November, and the award ceremony is set to take place on 23 November in Johannesburg. 

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept