Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story André Damons | Photo SUPPLIED
Prof Atangana
Prof Abdon Atangana, a professor of Applied Mathematics at the University of the Free State (UFS), is the highest-ranked UFS scientist included in Stanford University’s World’s Top 2% Scientists list.

A professor of Applied Mathematics at the University of the Free State (UFS) is again the highest-ranked scientist from the institution included in Stanford University’s annual ranking of the top 2% of scientists in the world. 

Prof Abdon Atangana from the UFS’s Institute for Groundwater is ranked number one in applied mathematics, mathematical physics, mathematics, and statistics in the world, and number 260 in all of science, technology, and engineering in the Stanford University World’s Top 2% Scientists list. He is also ranked highest (5 620) of all the UFS scientists included in the career-long data set. 

‘Africans in Africa can impact the world’

“The ranking provides us with the impact of our outputs, and it shows that Africans can contribute to the development of science, technology, engineering, and mathematics while still in Africa,” Prof Atangana said. “This also shows that Africans in Africa can have impact on the world. My motivation is to tell the next generation that Africans do not always need to graduate from the top universities of the global North to make a global impact.  

“We must work hard to make our African universities reach the same level of those from the global North, such that a student from the global North will wish to enroll in our universities. The development of our continent does not rest on sport, music, and so forth alone, but on science, technology, engineering, and mathematics. Having the best scientists, mathematicians, and engineers in the world in Africa should be the strive of all Africans.” 

Three of the UFS’s SARChI Research Chairs have also been included in this list: Prof Hendrik Swart, Chair: Solid-state Luminescent and Advanced Materials (Applied Physics, ranked 40 269 in the single-year dataset); Prof Melanie Walker, Chair: Higher Education and Human Development (ranked 68 337); and Prof Maryke Labuschagne, Chair: Disease Resistance and Quality in Field Crops (Plant Sciences, 165 780).  

Other UFS scientists included in the single-year data set are: Prof John M. Carranza (Geology, 4 837); Prof Muhammad Altaf Khan ( Applied Mathematics, 6 366); Prof Maxim Finkelstein (Statistics/ Mathematical Statistics, 63 394); Prof Marianne Reid (School of Nursing, 72 861); Prof John Owen (Centre for Development Support, 103 368); Prof Brownhilder Neneh (Department of Business Management, 73 635); Prof Jorma Hölsä (Research Fellow: Department of Physics, 88 833); Prof Johann Beukes (Philosophy & Classics, 6 547 764); Rian Venter, (829 709); Dr Yuri Marusik (Zoology and Entomology, 553 619); Prof Robert Schall (Department of Mathematical Statistics and Actuarial Science, 276 681); Prof Deborah Posel (Department of Sociology, 275 535); Dr Vijay Kumar (Physics, 274 541); Dr Abhay Prakash Mishra (Pharmacology, 229 625); Prof RE Kroon (Physics, 226 554); Dr Krishnan Anand (Chemical Pathology, 235 300); Prof Andrew Marston (Chemistry, 147 147); Dr Seda Igret Araz (Applied Mathematics,125 824); Prof Jeanet Conradie (Chemistry, 106 521); Prof Louis Scott (Plant Sciences, 73 874); Prof Johan Grobbelaar (Plant Sciences, 97 722); Prof David Motaung (Physics, 53 553); Dr Samuel Nambile Cumber (Health Systems Research and Development, 555 563). 

Career-long data set 

The Stanford University rankings also include a list of the top 2% of world-class researchers based on citations over their full careers. Scientists are classified into 22 scientific fields and 174 sub-fields. Field- and subfield-specific percentiles are also provided for all scientists with at least five published papers. Career-long data is updated to the end of 2021, and single recent-year data pertain to citations received during calendar year 2021. The selection is based on the top 100 000 scientists by C-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field.

The career-long data set includes the names of:

Prof Carranza (17 466); Prof Scott (55 882); Prof Reid (57 173); Prof Hölsä (64 402); Prof Grobbelaar (71 094); Prof Walker (78 239); Prof Andrew Marston (Chemistry, 84 484); Prof Schall (90 268); HA Snyman (Animal, Wildlife and Grassland Sciences, 96 374); Prof Swart (103 895); Robert WM Frater Cardiovascular Research Centre (111 896); Prof Frederick Kruger (Centre for Environmental Management,117 971); Prof Finkelstein (124 118); Prof Johan Visser (Geology, 125 331); Prof James C du Preez (Biotechnology, 168 841); Prof Posel (172 295); Prof Conradie (178 157); Prof Michael D MacNeil (Dairy and Animal Science, 184 193); Prof Khan (201 101); Prof Owen (262 897). 

“The representation of our researchers from a variety of disciplinary domains in this prestigious ranking, is confirmation of their excellence, impact, and the global esteem they hold. UFS is proud to be a home to scholars in our midst who take us incrementally forward as an institution because of their cutting-edge research,” said Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation. 

  • Prof Atangana has also been shortlisted as one of the finalists for the prestigious Alkebulan Immigrants Impact Awards (AIIA) 2023, in the South African Flag Carrier category. Voting started on 1 November, and the award ceremony is set to take place on 23 November in Johannesburg. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept