Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story André Damons | Photo SUPPLIED
Prof Atangana
Prof Abdon Atangana, a professor of Applied Mathematics at the University of the Free State (UFS), is the highest-ranked UFS scientist included in Stanford University’s World’s Top 2% Scientists list.

A professor of Applied Mathematics at the University of the Free State (UFS) is again the highest-ranked scientist from the institution included in Stanford University’s annual ranking of the top 2% of scientists in the world. 

Prof Abdon Atangana from the UFS’s Institute for Groundwater is ranked number one in applied mathematics, mathematical physics, mathematics, and statistics in the world, and number 260 in all of science, technology, and engineering in the Stanford University World’s Top 2% Scientists list. He is also ranked highest (5 620) of all the UFS scientists included in the career-long data set. 

‘Africans in Africa can impact the world’

“The ranking provides us with the impact of our outputs, and it shows that Africans can contribute to the development of science, technology, engineering, and mathematics while still in Africa,” Prof Atangana said. “This also shows that Africans in Africa can have impact on the world. My motivation is to tell the next generation that Africans do not always need to graduate from the top universities of the global North to make a global impact.  

“We must work hard to make our African universities reach the same level of those from the global North, such that a student from the global North will wish to enroll in our universities. The development of our continent does not rest on sport, music, and so forth alone, but on science, technology, engineering, and mathematics. Having the best scientists, mathematicians, and engineers in the world in Africa should be the strive of all Africans.” 

Three of the UFS’s SARChI Research Chairs have also been included in this list: Prof Hendrik Swart, Chair: Solid-state Luminescent and Advanced Materials (Applied Physics, ranked 40 269 in the single-year dataset); Prof Melanie Walker, Chair: Higher Education and Human Development (ranked 68 337); and Prof Maryke Labuschagne, Chair: Disease Resistance and Quality in Field Crops (Plant Sciences, 165 780).  

Other UFS scientists included in the single-year data set are: Prof John M. Carranza (Geology, 4 837); Prof Muhammad Altaf Khan ( Applied Mathematics, 6 366); Prof Maxim Finkelstein (Statistics/ Mathematical Statistics, 63 394); Prof Marianne Reid (School of Nursing, 72 861); Prof John Owen (Centre for Development Support, 103 368); Prof Brownhilder Neneh (Department of Business Management, 73 635); Prof Jorma Hölsä (Research Fellow: Department of Physics, 88 833); Prof Johann Beukes (Philosophy & Classics, 6 547 764); Rian Venter, (829 709); Dr Yuri Marusik (Zoology and Entomology, 553 619); Prof Robert Schall (Department of Mathematical Statistics and Actuarial Science, 276 681); Prof Deborah Posel (Department of Sociology, 275 535); Dr Vijay Kumar (Physics, 274 541); Dr Abhay Prakash Mishra (Pharmacology, 229 625); Prof RE Kroon (Physics, 226 554); Dr Krishnan Anand (Chemical Pathology, 235 300); Prof Andrew Marston (Chemistry, 147 147); Dr Seda Igret Araz (Applied Mathematics,125 824); Prof Jeanet Conradie (Chemistry, 106 521); Prof Louis Scott (Plant Sciences, 73 874); Prof Johan Grobbelaar (Plant Sciences, 97 722); Prof David Motaung (Physics, 53 553); Dr Samuel Nambile Cumber (Health Systems Research and Development, 555 563). 

Career-long data set 

The Stanford University rankings also include a list of the top 2% of world-class researchers based on citations over their full careers. Scientists are classified into 22 scientific fields and 174 sub-fields. Field- and subfield-specific percentiles are also provided for all scientists with at least five published papers. Career-long data is updated to the end of 2021, and single recent-year data pertain to citations received during calendar year 2021. The selection is based on the top 100 000 scientists by C-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field.

The career-long data set includes the names of:

Prof Carranza (17 466); Prof Scott (55 882); Prof Reid (57 173); Prof Hölsä (64 402); Prof Grobbelaar (71 094); Prof Walker (78 239); Prof Andrew Marston (Chemistry, 84 484); Prof Schall (90 268); HA Snyman (Animal, Wildlife and Grassland Sciences, 96 374); Prof Swart (103 895); Robert WM Frater Cardiovascular Research Centre (111 896); Prof Frederick Kruger (Centre for Environmental Management,117 971); Prof Finkelstein (124 118); Prof Johan Visser (Geology, 125 331); Prof James C du Preez (Biotechnology, 168 841); Prof Posel (172 295); Prof Conradie (178 157); Prof Michael D MacNeil (Dairy and Animal Science, 184 193); Prof Khan (201 101); Prof Owen (262 897). 

“The representation of our researchers from a variety of disciplinary domains in this prestigious ranking, is confirmation of their excellence, impact, and the global esteem they hold. UFS is proud to be a home to scholars in our midst who take us incrementally forward as an institution because of their cutting-edge research,” said Prof Vasu Reddy, UFS Deputy Vice-Chancellor: Research and Internationalisation. 

  • Prof Atangana has also been shortlisted as one of the finalists for the prestigious Alkebulan Immigrants Impact Awards (AIIA) 2023, in the South African Flag Carrier category. Voting started on 1 November, and the award ceremony is set to take place on 23 November in Johannesburg. 

News Archive

UFS Department of Physics offers unique learning experience with on-campus radio telescope
2015-12-14

Athanasius Ramaila, an Honours student in the Department of Physics, and Dr Brian van Soelen, a lecturer from the same department, in the laboratory where the radio telescope is housed in the new wing of the Physics Building on the Bloemfontein Campus of the UFS. The telescope will be used to expose graduate students to the basic techniques of radio astronomy.
Photo: Charl Devenish

The university this year added a four-storey wing to the existing Physics Building on the Bloemfontein Campus. The new development, which includes four lecture halls and four laboratories, complements other world-class facilities such as the X-ray photoelectron spectroscope and the scanning electron microscope.

A unique asset that distinguishes the UFS Department of Physics from other similar institutions, is the Boyden Observatory situated approximately 27 km northeast of Bloemfontein. The observatory houses a powerful 1.5 m optical telescope, and several smaller, but well equipped telescopes.

According to Pieter Meintjes, Professor in the Department of Physics, the observatory has acquired a new addition - a 0.5 m optical telescope donated by the South African Astronomical Observatory (SAAO) and the National Research Foundation (NRF) to the UFS Astrophysics Group. This optical telescope is one of two powerful optical telescopes used to introduce students to techniques such as photometry and spectroscopy.

“The telescope at Boyden forms an integral part of the Department of Physic’s student training and research programme. Because the UFS is the only university in South Africa operating such a facility, and one of only a few globally, Astrophysics students at the UFS have the unique privilege of having unrestricted access to these telescopes for their MSc and PhD studies,” says Prof Meintjes. In addition, the department has also built a radio telescope as part of a post-graduate student project. The telescope, housed in the new wing of the Physics Building at the Bloemfontein Campus of the UFS, will be used to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA is nascent. Prof Meintjes would like to act proactively by grounding his students in the relevant techniques of radio astronomy. The telescope will be used to introduce students to the manner in which radio flux calibrations are performed in order to determine the energy output of an emitting source.

At undergraduate level, the radio telescope will be used, together with optical telescopes in the Astrophysics laboratory, to place students at a high baseline regarding the level of multi-wavelength astrophysics training received at the UFS.

Third-year and Honours students will also have the opportunity of practical training in a research laboratory with 15 computers. The laboratory is equipped with software used to reduce and analyse multi-wavelength data.

“My goal is for the UFS to become the major centre of multi-wavelength astrophysics in South Africa and a key role player in the international arena. To be able to do this, our training should be world class,” Prof Meintjes said.

Aided by its world-class facilities and research, the Department of Physics is competing with the best in the world. Research-wise, a group from the Department of Physics is intensively involved with the SKA Project (Square Kilometre Array), with 3 000 dishes reaching from Carnavon in the Karoo to Mauritius in the Indian Ocean. According to Prof Meintjes, many detailed studies can be conducted with the SKA system of sources, showing major eruptions and mass effluent from the systems. Athanasius Ramaila, a BSc Honours student in Astrophysics at the UFS, has also received a two-year SKA internship, where he will be engaged in the SKA software engineering programme to help with developing software for the telescope.

The UFS Astrophysics Group is focusing on the multi-wavelength study of high-energy astrophysics sources. “This multi-wavelength approach to astrophysics is in line with the recent announcement by government that multi wavelength astrophysics will be the main focus for astrophysics research in South Africa. It is also a very important focus for research in the international arena, as can be seen from the large number of international conferences having a multi-wavelength character,” Prof Meintjes said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept