Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 November 2023 | Story Reuben Maeko | Photo SUPPLIED
Prof Nyoni, Dr Omar Mohamed Al-Ansari and Dr James Campbell
Prof Nyoni hands over the Winterthur Doha Interprofessional Declaration to the President of Qatar University Dr Omar Mohamed Al-Ansari and the WHO Director for Health Workforce Dr James Campbell at the All Together Better Health Conference in Doha, Qatar.

A delegation of five academics from the University of the Free State (UFS) made significant contributions at the recently concluded All Together Better Health Conference (ATBH) in Doha, Qatar. Led by Prof Champion Nyoni, Senior Researcher in the UFS School of Nursing and current Chairperson of Interprofessional.Global, the team showcased their research to an international audience, further solidifying UFS’s commitment to advancing interprofessional education and collaborative practices. 

Engagement at the Conference

The esteemed UFS academics, including Dr Lizemari Hugo-van Dyk (School of Nursing), Dr Anke van der Merwe (School of Health and Rehabilitation Sciences), Dr Riaan van Wyk (Clinical Skills and Simulation Unit), and Dr Benjamin Botha (Computer Science and Informatics), actively participated in the conference, presenting their research findings to over 600 delegates from around the world. The ATBH Conference brought together students, educators, researchers, and policymakers with a shared goal of advancing interprofessional education and collaborative practices. 

UFS’s leading role in Interprofessional Education

Interprofessional education (IPE), the focal point of the conference, involves collaborative learning among students from multiple health and social care professions. The UFS has been a trailblazer in the IPE domain, boasting a robust IPE programme that has been running successfully for nearly a decade.

Leadership excellence by Prof Nyoni

Prof Nyoni, as the Chair of Interprofessional. Global, played a pivotal role in the conference, showcasing leadership and communication excellence on a global scale. Interprofessional. Global is a confederation of regional networks worldwide purposed to embed IPE as part of mainstream training for the health workforce globally. His welcome address during the grand opening ceremony, attended by esteemed dignitaries including Her Highness Sheika Moza bint Nasser, the President of Qatar University, and the Director for Health Workforce at the World Health Organization (WHO), marked a momentous occasion. Moreover, Prof Nyoni presented the Winterthur-Doha Interprofessional Declaration to Qatar University and the WHO, symbolically endorsing IPE as a strategy to enhance global health outcomes. 

The Winter-Doha Interprofessional Declaration

Explaining the significance of the Winter-Doha Interprofessional Declaration, Prof Nyoni expressed his excitement, stating, “I am thrilled that the World Health Organisation was forthcoming to receive this declaration – symbolically endorsing IPE as a strategy to enhance our health outcomes.” He added that this declaration would influence global efforts towards true IPE integration, with global representatives within the IPE community contributing to this milestone. 

Research presentations by UFS Academics

The UFS academics delivered impactful presentations at the conference. Drs Hugo-van Dyk and Botha, along with Prof Nyoni, discussed “An Online Programme for Clinical Facilitators in Health Professions Education: A missed opportunity for IPE.” Additionally, they presented on desktop-based virtual reality to enhance role clarification in interprofessional education. Drs Van der Merwe and Van Wyk, along with Prof Nyoni, presented “Educator needs regarding a simulation debriefing programme: A missed opportunity for interprofessional practice at a South African University.” 

Global collaboration and appreciation 

Dr Botha, a member of the African Interprofessional Education Network (AfrlPEN), expressed appreciation for the opportunity, stating, “We have made good milestones globally and we are committed to continue to impact and influence the global space.” Dr van der Merwe echoed this sentiment, acknowledging the chance to connect with like-minded professionals worldwide and expressing gratitude to the UFS for facilitating this opportunity. 

Closing thoughts 

The UFS delegation’s active participation at the ATBH Conference not only underscores the university's commitment to advancing interprofessional education but also reinforces its global leadership in this critical domain. The contributions made at this prestigious event exemplify the UFS’s dedication to collaborative practices that enhance healthcare outcomes on a global scale. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept