Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story André Damons | Photo SUPPLIED
UFS experts give presentations on hospital-acquired infections at Africa Health
From left (bottom) Samantha Mc Carlie, Prof Robert Bragg and Caroline Bilen. (Back) Hugo La Reserve (from PMB Health and Safety) and Dr Noor Zakhura (from Free State Department of Health) at the Africa Health Exhibition.

It was recently discovered that bacteria are capable of growing inside bottles of disinfectants, hand sanitisers and antiseptics. These cleaning products, which are actively used in South African hospitals, are doing more harm than good by contaminating the environment they are designed to clean. Upon testing, some of these contaminated bottles harbouring harmful microorganisms were still actively in use in hospitals and instead of killing microorganisms, the contaminated cleaning solutions were spreading pathogens throughout the hospital with their use. 

This is according to Samantha Mc Carlie from the Department of Microbiology and Biochemistry at the University of the Free State (UFS). She, with her promotor, Prof Robert Bragg, were part of a workshop at the Africa Health Exhibition – the biggest gathering of health care professionals in South Africa and Africa. This was held at Gallagher Estate, Midrand, from 17 to 19 October 2023. 

Increasing mortalities in health-care setting

In a workshop titled: “Developing and sustaining safe health-care environments”, they were part of the main presenting panel, together with Caroline Bilen from the Compass Health Consultancy in Dubai 

Prof Bragg, whose main research is in disease-control, first in the agricultural industry, and now human health, started off the session by highlighting the problems with the increasing mortalities in the health-care setting. He presented data indicating that in the not too distant future, deaths from hospital-acquired infections would be the leading cause of human deaths. “This problem is rapidly growing as most of the pathogens which people contract while in hospital are now resistant to antibiotics, making them very difficult to treat,” he explained.

He used an analogy from San Tzu from the book The Art of War to explain why humankind is losing the war against the microbes. “San Tzu stated that if you know yourself and know your enemy, you will be victorious in every battle. On the other hand, if you do not know yourself or the enemy, you will be defeated in every battle. He pointed out that we do not know the enemy and we do know ourselves (or rather the weapons we have to defeat the enemy) and for this reason we are being defeated,” according to Prof Bragg. 

He continued: “We know the names of the different pathogens causing diseases, but do we really understand them? The answer to that must be ‘no’. A typical example is people are using ethanol-based or chlorine-based products to disinfect and then they wonder why there are increasing problems with Clostridioides difficile infections. If we knew the enemy, we would know that this bacterium producers endospores  and chlorine and ethanol-based disinfectants do not inactivate bacterial endospores, and so will not kill this bacterium,” said Prof Bragg. 

He stated that a major concern for hospitals is that they are currently unaware of whether the disinfectants they are using are effective against the pathogens in their hospital. It is assumed that their cleaning products are working but no testing is being done.

Bacterial resistance to disinfectants

Mc Carlie, in her presentation, highlighted the development of bacterial resistance to disinfectants and why this is important in the health-care setting. She pointed out that the standards for the registration of disinfectant products is based on the use of reference strains of bacteria.

“Bacteria found in hospital environments often exhibit significantly greater resistance to disinfectant compounds compared to the standard strains used for product testing. The presence of these resistant bacteria can result in microbial growth and contamination within containers of disinfectants, hand sanitisers, and antiseptics intended for hospital cleaning purposes. Instead of effectively eliminating microorganisms, these contaminated products inadvertently spread these resilient bacteria throughout the hospital environment, contributing to overall contamination,” said Mc Carlie.

She also discussed the consequences of using incorrectly diluted disinfectant products at concentrations that will not be effective against resilient hospital pathogens. 

Prof Bragg finished the session with a discussion on the solutions to the current problem and highlighted the need for a paradigm shift in medicine. “The current paradigm, since the discovery of antibiotics, has been treatment. As we are entering into a post-antibiotic era, this paradigm of treatment needs to change to one of ‘prevention’. The old saying ‘Prevention is better than cure’ has never been more true.”

He concluded by discussing various options which could be used when focus is placed on biosecurity for the prevention of hospital-acquired infection; including the installation of UV lights, monitoring of the laundry process, correct disinfecting of surfaces, using products with proven efficacy against the pathogens isolated from the different health-care setting and finally, the use of antimicrobial bedside privacy curtains.

The workshop ended with a panel discussion on biosecurity and the efforts needed to reduce the ever-increasing numbers of hospital-acquired infections. It is hoped that the message of this workshop will have a significant impact on the reduction of hospital acquired infections. 

Click to view documentProf Bragg's presentation.

Click to view documentMc Carlie's presentation.

News Archive

Mineral named after UFS professor
2017-09-29

Description: Mineral tredoux Tags: International Mineralogical Association, tredouxite, Prof Marian Tredoux, Department of Geology, Barberton 

Tredouxite (white) intergrown with bottinoite (light grey),
a complex hydrous alteration product. The large host
minerals are nickel-rich silicate (grey), maybe willemseite,
and the spinel trevorite (dark grey).


More than five thousand minerals have been certified by the International Mineralogical Association (IMA). One of these minerals, tredouxite, was recently named after an academic at the University of the Free State (UFS). 

Tredouxite was named after Prof Marian Tredoux, an associate professor in the Department of Geology, to acknowledge her close to 30 years’ commitment to figuring out the geological history of the rock in which this mineral occurs. The name was chosen by the team which identified the new mineral, consisting of Dr Federica Zaccarini and Prof. Giorgio Garuti from the University of Leoben, Austria, Prof. Luca Bindi from the University of Florence, Italy, and Prof. Duncan Miller from the UFS. 

They found the mineral in the abovementioned rock from the Barberton region in Mpumalanga, in May 2017.

In the past, a mineral was also named after Marie Curie
With the exception of a few historical (pre-1800) names, a mineral is typically named either after the area where it was first found, or after its chemical composition or physical properties, or after a person. If named after a person, it has to be someone who had nothing to do with finding the mineral.

Prof Tredoux said: “As of 19 September 2017, 5292 minerals had been certified by IMA. Of these, 81 were named after women, either singly or with a near relation. Marie Curie is named twice: sklodowskite (herself) and curite (plus husband). Most of the named women are Russian geoscientists.”

Another way to assess the rarity of such a naming is to consider that fewer than 700 minerals have been named after people. Given that there are by now seven billion people on the planet, it means that a person who is granted a mineral name becomes one in 10 million of the people alive today to be honoured in such a way. To date, over a dozen minerals had been named after South Africans, three of them after women (including tredouxite).

It contains nickel, antimony and oxygen
The chemical composition of tredouxite is NiSb2O6 (nickel antimony oxide). This makes it the nickel equivalent of the magnesium mineral bystromite (MgSb2O6), described in the 1950s from the La Fortuna antimony mine in Mexico.  

“This announcement is of great academic importance: the discovery by the Italian team of a phase with that specific chemical composition will undoubtedly help me and my co-workers to better understand the origin of the rock itself,” she said. She also expressed the hope that it may raise interest in the Department of Geology and the UFS as a whole, by highlighting that world-class research is being done at the department. 

The announcement of this new mineral was published on the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification website, the Mineralogical Magazine and the European Journal of Mineralogy.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept