Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story André Damons | Photo SUPPLIED
UFS experts give presentations on hospital-acquired infections at Africa Health
From left (bottom) Samantha Mc Carlie, Prof Robert Bragg and Caroline Bilen. (Back) Hugo La Reserve (from PMB Health and Safety) and Dr Noor Zakhura (from Free State Department of Health) at the Africa Health Exhibition.

It was recently discovered that bacteria are capable of growing inside bottles of disinfectants, hand sanitisers and antiseptics. These cleaning products, which are actively used in South African hospitals, are doing more harm than good by contaminating the environment they are designed to clean. Upon testing, some of these contaminated bottles harbouring harmful microorganisms were still actively in use in hospitals and instead of killing microorganisms, the contaminated cleaning solutions were spreading pathogens throughout the hospital with their use. 

This is according to Samantha Mc Carlie from the Department of Microbiology and Biochemistry at the University of the Free State (UFS). She, with her promotor, Prof Robert Bragg, were part of a workshop at the Africa Health Exhibition – the biggest gathering of health care professionals in South Africa and Africa. This was held at Gallagher Estate, Midrand, from 17 to 19 October 2023. 

Increasing mortalities in health-care setting

In a workshop titled: “Developing and sustaining safe health-care environments”, they were part of the main presenting panel, together with Caroline Bilen from the Compass Health Consultancy in Dubai 

Prof Bragg, whose main research is in disease-control, first in the agricultural industry, and now human health, started off the session by highlighting the problems with the increasing mortalities in the health-care setting. He presented data indicating that in the not too distant future, deaths from hospital-acquired infections would be the leading cause of human deaths. “This problem is rapidly growing as most of the pathogens which people contract while in hospital are now resistant to antibiotics, making them very difficult to treat,” he explained.

He used an analogy from San Tzu from the book The Art of War to explain why humankind is losing the war against the microbes. “San Tzu stated that if you know yourself and know your enemy, you will be victorious in every battle. On the other hand, if you do not know yourself or the enemy, you will be defeated in every battle. He pointed out that we do not know the enemy and we do know ourselves (or rather the weapons we have to defeat the enemy) and for this reason we are being defeated,” according to Prof Bragg. 

He continued: “We know the names of the different pathogens causing diseases, but do we really understand them? The answer to that must be ‘no’. A typical example is people are using ethanol-based or chlorine-based products to disinfect and then they wonder why there are increasing problems with Clostridioides difficile infections. If we knew the enemy, we would know that this bacterium producers endospores  and chlorine and ethanol-based disinfectants do not inactivate bacterial endospores, and so will not kill this bacterium,” said Prof Bragg. 

He stated that a major concern for hospitals is that they are currently unaware of whether the disinfectants they are using are effective against the pathogens in their hospital. It is assumed that their cleaning products are working but no testing is being done.

Bacterial resistance to disinfectants

Mc Carlie, in her presentation, highlighted the development of bacterial resistance to disinfectants and why this is important in the health-care setting. She pointed out that the standards for the registration of disinfectant products is based on the use of reference strains of bacteria.

“Bacteria found in hospital environments often exhibit significantly greater resistance to disinfectant compounds compared to the standard strains used for product testing. The presence of these resistant bacteria can result in microbial growth and contamination within containers of disinfectants, hand sanitisers, and antiseptics intended for hospital cleaning purposes. Instead of effectively eliminating microorganisms, these contaminated products inadvertently spread these resilient bacteria throughout the hospital environment, contributing to overall contamination,” said Mc Carlie.

She also discussed the consequences of using incorrectly diluted disinfectant products at concentrations that will not be effective against resilient hospital pathogens. 

Prof Bragg finished the session with a discussion on the solutions to the current problem and highlighted the need for a paradigm shift in medicine. “The current paradigm, since the discovery of antibiotics, has been treatment. As we are entering into a post-antibiotic era, this paradigm of treatment needs to change to one of ‘prevention’. The old saying ‘Prevention is better than cure’ has never been more true.”

He concluded by discussing various options which could be used when focus is placed on biosecurity for the prevention of hospital-acquired infection; including the installation of UV lights, monitoring of the laundry process, correct disinfecting of surfaces, using products with proven efficacy against the pathogens isolated from the different health-care setting and finally, the use of antimicrobial bedside privacy curtains.

The workshop ended with a panel discussion on biosecurity and the efforts needed to reduce the ever-increasing numbers of hospital-acquired infections. It is hoped that the message of this workshop will have a significant impact on the reduction of hospital acquired infections. 

Click to view documentProf Bragg's presentation.

Click to view documentMc Carlie's presentation.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept