Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 November 2023 | Story André Damons | Photo SUPPLIED
UFS experts give presentations on hospital-acquired infections at Africa Health
From left (bottom) Samantha Mc Carlie, Prof Robert Bragg and Caroline Bilen. (Back) Hugo La Reserve (from PMB Health and Safety) and Dr Noor Zakhura (from Free State Department of Health) at the Africa Health Exhibition.

It was recently discovered that bacteria are capable of growing inside bottles of disinfectants, hand sanitisers and antiseptics. These cleaning products, which are actively used in South African hospitals, are doing more harm than good by contaminating the environment they are designed to clean. Upon testing, some of these contaminated bottles harbouring harmful microorganisms were still actively in use in hospitals and instead of killing microorganisms, the contaminated cleaning solutions were spreading pathogens throughout the hospital with their use. 

This is according to Samantha Mc Carlie from the Department of Microbiology and Biochemistry at the University of the Free State (UFS). She, with her promotor, Prof Robert Bragg, were part of a workshop at the Africa Health Exhibition – the biggest gathering of health care professionals in South Africa and Africa. This was held at Gallagher Estate, Midrand, from 17 to 19 October 2023. 

Increasing mortalities in health-care setting

In a workshop titled: “Developing and sustaining safe health-care environments”, they were part of the main presenting panel, together with Caroline Bilen from the Compass Health Consultancy in Dubai 

Prof Bragg, whose main research is in disease-control, first in the agricultural industry, and now human health, started off the session by highlighting the problems with the increasing mortalities in the health-care setting. He presented data indicating that in the not too distant future, deaths from hospital-acquired infections would be the leading cause of human deaths. “This problem is rapidly growing as most of the pathogens which people contract while in hospital are now resistant to antibiotics, making them very difficult to treat,” he explained.

He used an analogy from San Tzu from the book The Art of War to explain why humankind is losing the war against the microbes. “San Tzu stated that if you know yourself and know your enemy, you will be victorious in every battle. On the other hand, if you do not know yourself or the enemy, you will be defeated in every battle. He pointed out that we do not know the enemy and we do know ourselves (or rather the weapons we have to defeat the enemy) and for this reason we are being defeated,” according to Prof Bragg. 

He continued: “We know the names of the different pathogens causing diseases, but do we really understand them? The answer to that must be ‘no’. A typical example is people are using ethanol-based or chlorine-based products to disinfect and then they wonder why there are increasing problems with Clostridioides difficile infections. If we knew the enemy, we would know that this bacterium producers endospores  and chlorine and ethanol-based disinfectants do not inactivate bacterial endospores, and so will not kill this bacterium,” said Prof Bragg. 

He stated that a major concern for hospitals is that they are currently unaware of whether the disinfectants they are using are effective against the pathogens in their hospital. It is assumed that their cleaning products are working but no testing is being done.

Bacterial resistance to disinfectants

Mc Carlie, in her presentation, highlighted the development of bacterial resistance to disinfectants and why this is important in the health-care setting. She pointed out that the standards for the registration of disinfectant products is based on the use of reference strains of bacteria.

“Bacteria found in hospital environments often exhibit significantly greater resistance to disinfectant compounds compared to the standard strains used for product testing. The presence of these resistant bacteria can result in microbial growth and contamination within containers of disinfectants, hand sanitisers, and antiseptics intended for hospital cleaning purposes. Instead of effectively eliminating microorganisms, these contaminated products inadvertently spread these resilient bacteria throughout the hospital environment, contributing to overall contamination,” said Mc Carlie.

She also discussed the consequences of using incorrectly diluted disinfectant products at concentrations that will not be effective against resilient hospital pathogens. 

Prof Bragg finished the session with a discussion on the solutions to the current problem and highlighted the need for a paradigm shift in medicine. “The current paradigm, since the discovery of antibiotics, has been treatment. As we are entering into a post-antibiotic era, this paradigm of treatment needs to change to one of ‘prevention’. The old saying ‘Prevention is better than cure’ has never been more true.”

He concluded by discussing various options which could be used when focus is placed on biosecurity for the prevention of hospital-acquired infection; including the installation of UV lights, monitoring of the laundry process, correct disinfecting of surfaces, using products with proven efficacy against the pathogens isolated from the different health-care setting and finally, the use of antimicrobial bedside privacy curtains.

The workshop ended with a panel discussion on biosecurity and the efforts needed to reduce the ever-increasing numbers of hospital-acquired infections. It is hoped that the message of this workshop will have a significant impact on the reduction of hospital acquired infections. 

Click to view documentProf Bragg's presentation.

Click to view documentMc Carlie's presentation.

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept