Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 November 2023 | Story André Damons | Photo SUPPLIED
Ricus Krause, an honours student in the Department of Computer Science and Informatics at the University of the Free State (UFS)
Ricus Krause, an honours student in the Department of Computer Science and Informatics at the University of the Free State (UFS), receives his awards during the Suid-Afrikaanse Akademie vir Wetenskap en Kuns (The South African Academy for Science and Arts) Student Symposium in Natural Sciences.

An honours student in the Department of Computer Science and Informatics at the University of the Free State (UFS) project on using blockchain technology to protect whistleblowers secured him first place for the best project and presentation in his session at the annual Suid-Afrikaanse Akademie vir Wetenskap en Kuns (The South African Academy for Science and Arts) Student Symposium in Natural Sciences.

Ricus Krause, who presented his project, titled “Blokskakel Fluitjieblaser-Stelsel” (Blockchain Whistleblower System), at the symposium, also received the Eureka DIY Solutions Prize for an Outstanding Contribution to Computer Sciences and Mathematical Sciences. The symposium was hosted by the University of Pretoria in October.  

His research aimed to address the shortcomings of current systems for protecting whistleblowers and to design a robust computer system that ensures the confidentiality and integrity of information by using blockchain technology. This system had to protect whistleblowers’ identities and securely preserve evidence of corruption. 

Interested in Cybersecurity

“I have been interested in Cybersecurity ever since I started studying. I approached Dr Wynand Nel (supervisor) at the start of my honours year to ask if he had any ideas for a security-focused project, and he introduced me to blockchain technology and the blockchain research group. Blockchain piqued my security interest and allowed me to explore the field further.”

“After meeting with the group, the idea of a blockchain-based system for whistleblowers was born, and I started researching South Africa’s biggest problems, where corruption is at the top. During my initial research, I also discovered that whistleblowers face extreme consequences much more frequently than we think,” says Krause. 

He identified the main problem with whistleblowing as the revelation of a whistleblower’s identity before it is safe. Thus, a system was needed to protect a whistleblower’s anonymity and facilitate safe communication to contact investigators.

On winning the awards, Krause said he knew he was competing against master’s and PhD students and did not expect to win. “This was the first time I’d presented my project at an event, so I was surprised when my name was called for the first prize in my session. I wanted to pinch myself to make sure I wasn’t dreaming.”

“I am genuinely grateful to have had the opportunity to present months of research to my peers and experts in their fields. I will always look back at the event with fond memories. I am proud of myself and my fellow students for presenting their research at the symposium when others did not dare to,” he says. 

Address shortcomings of current systems

Krause is supervised by Dr Nel and Dr Rouxan Fouché, lecturers in the Department of Computer Science and Informatics and this research project falls within the department’s research focus area of Blockchain Technologies, headed by Dr Nel. The digital transformation of industries, known as Industry 4.0 has already started, and blockchain forms part of the digital revolution. The research areas include blockchain algorithms and data structures, blockchain security, blockchain applications and crypto assets.

With the recent high-profile killings of two whistleblowers in South Africa and with many other whistleblowers becoming victims of intimidation and violence to silence them after their identities were exposed, the researchers believe it is necessary to conduct research and develop a computer system to address the glaring shortcomings of current systems.

“Our research identified blockchain technology as a potential solution that meets these needs. Blockchain provides an immutable structure, supports non-repudiation, and grants accessibility to all stakeholders. It has the potential to provide a security-focused system that preserves the confidentiality and integrity of evidence. The system involves the anonymous registration of whistleblowers, the processing and storage of evidence, and the use of cryptography to ensure the privacy of messages,” says Krause. 

According to him, implementing this system in the real world, including the composition of the blockchain structure, seems daunting, especially regarding scalability and legal issues. With this project, he explains, they built a working blockchain system on a single computer. The project can be improved by expanding the blockchain system to multiple nodes communicating over a network. This improvement will take the Blockchain Whistleblower project from a concept to a valuable contribution to society.

How it works

“In a nutshell, this research has highlighted the potential of a blockchain-based whistleblower system to overcome the challenges surrounding corruption. It is a step forward in the fight against crime and the protection of those with the courage to expose misconduct. However, it is essential to continue with research and implementation to make this system a reality and fulfil its promise,” Dr Nel says.  

Traditionally, Krause explains, a central system is used where a single organisation controls the system. The potential danger is that the system provider becomes a single point of failure for the system and, thus, a target for cyberattacks. Another concern of a centralised system is the organisation’s ability to manipulate data and uncover the identities of whistleblowers. The integrity of the evidence can also be questioned when it is stored in a centralised database where modifications from a single point of access can affect all data.

A centralised system, therefore, would not be reliable enough for the high-risk circumstances of whistleblowers. They have concluded that a distributed or decentralised system would be an appropriate solution to the problem. A distributed system will continue to function as a whole even if a part is compromised.

The Blockchain Whistleblower System aims to make a proof-of-concept contribution to the field of blockchain technology. The system is installed locally on the user’s computer, where whistleblowers and investigators use an anonymous profile to interact with the system, which interacts with the blockchain. After signing in, users can choose to report a new incident or view messages on the blockchain.

Reporting a crime 

If the user wants to blow the whistle on a crime, the process starts with a report to gather more information about the incident. The whistleblower then selects the evidence of the crime on their computer. A hash function algorithm processes the evidence to create a fixed-length evidence hash. Hashing is a one-way cryptographic process that uniquely represents the input data. It is important to note that only the evidence hash is stored on the blockchain, not the evidence itself. The selected evidence is stored in a password-protected encrypted folder on the whistleblower’s computer. Investigators can later use this evidence hash to verify the integrity of the evidence when they eventually receive it.

What is next for this project? 

Krause says he would like to implement his project with nodes communicating via a network in the future. A network opens a new box of security considerations to explore and discover and would also enable the programme to be used at any location, making it accessible to whistleblowers everywhere.

“This project started with the idea to protect whistleblowers’ identities and provide a platform for them to contact investigators safely. The end goal is for the project to provide a platform where whistleblowers can anonymously report misconduct, safely communicate with investigators, and verify the integrity of their evidence.

“My hope for the project is to build a better South Africa by fighting corruption, one of the biggest obstacles to our country’s growth. By solving the many challenges whistleblowers encounter, I hope to foster a culture where whistleblowers are not afraid to speak out against crime.”

News Archive

UFS implements access control measures on our Bloemfontein Campus
2014-11-21



Photo: Hannes Pieterse

Online Application form: non personnel

Map with access gates on the Bloemfontein Campus


Accessing the Bloemfontein Campus from 3 November 2014

Access control during major events on the Bloemfontein Campus

Q&A




The University of the Free State (UFS) has been tightening security measures on its Bloemfontein Campus for quite some time now. Purposefully, we have consolidated several safety measures to keep our students, staff and visitors – the heartbeat of our university – protected.

Our most significant step in this endeavour is now in the process of implementation. All five entrance gates to the campus are being equipped with strict access control.

The first phase of the process was implemented beginning of August 2014. Gates 2 (Badenhorst Street) and 4 (Furstenburg Street) were equipped with card readers. Only persons with valid access cards can enter and leave through these gates. Existing staff and student cards are equipped to be read by the short-distance card readers at the gates in order to activate the booms.

At this stage, staff and students are swiping their cards against the card readers at Gates 2 and 4 or holding it not further than 20 mm from the reader for the boom to open. Card holders now physically stop in front of the boom in order to get access to the campus.  

The duel-frequency card:

The dual-frequency cards available at the Card Division on the Thakaneng Bridge are currently out of stock. New cards will be delivered on Friday 14 November 2014.

The special offer of R30 per access card has been extended to the end of November 2014. To qualify for this offer, staff and students may pay the R30 for a dual-frequency card at the bank or cashiers on the Thakaneng Bridge no later than 28 November.  The cost of dual-frequency cards will increase to R60 per card from 1 December 2014.

Please note that only people with vehicles need to apply for dual-frequency cards.

Students and staff will, however, still be able to gain access to the Bloemfontein Campus with their current cards (in the case of staff and students who haven’t purchased dual-frequency cards yet). As is currently the practice at the gates in Furstenburg and Badenhorst Streets, you will have to stop when you reach the boom, swipe your card past the card reader, the boom will open and you will be able to drive through.

Staff and students using their dual-frequency cards should:

-       Reduce speed
-       Hold the card in a vertical position at the driver’s side window, in the direction of the long-distance reader (see photo)

It is therefore not necessary to stop in front of the boom. On holding your card upright, in line with the card reader, the gate will open automatically and you will be able to drive through (keep your card outside your window; the card reader cannot operate through tinted windows).

Please note that this arrangement only applies to incoming lanes. On leaving the campus, the card has to be swiped. This is due to the number-plate recognition technology installed at exits for additional security.

If the long-distance reader does not work, the dual-frequency card can still be used at a tag reader. 

Applying for your new card:

Electronic fund transfers: Absa Bank: 1 570 8500 71, Ref: 1 413 07670 0198, OR pay the R30 at the UFS Cashiers, Thakaneng Bridge. Please note that the price of the cards will increase to R60 from 1 November 2014.

Take your existing personnel or student card, together with proof of payment, to the UFS Card Division, Bloemfontein Campus, Thakaneng Bridge, to have your photo taken and your new dual-frequency card issued.

Permission to access specific UFS buildings or facilities linked to your existing card, will be automatically linked to the new card.

The new card is marked ‘dual’ on the back in the right, bottom corner.

The UFS Cashiers will provide assistance between 09:00 and 14:30, and the UFS Card Division between 09:00 and 15:00.

Implementation of full access control


Full access control will be implemented on the UFS’s Bloemfontein Campus from 3 November 2014. This means that access control will be implemented at all gates on the Bloemfontein Campus.

Who is using which gate? See Q&A for more information.


Gate 3 (Wynand Mouton Drive) is earmarked for use by official card holders. These include students, staff and persons doing business on campus. Parents dropping and fetching their children for sports, as well as service providers of the UFS, such as architects, may apply for valid cards. These persons will have to provide proof that they have business on campus (complete online application form and sign declaration).

All visitors to the campus will be referred to the Visitor’s Centre at Gate 5 (DF Malherbe Drive). This include, among others, parents, family and friends of students, as well as conference delegates. It is estimated that the Visitor’s Centre will be completed at the end of November (note that the gate at DF Malherbe Drive will be operational by 3 November 2014). Visitors will sign in at the Visitor’s Centre and, depending on the business they have on campus, they will only be allowed on campus for a certain period of time.

•    Lane 1 at Gate 5 will be used by visitors and service providers to enter the campus. Only card holders will be able to use lane 2.
•    Buses and trucks can also enter the campus through Gate 5.

The construction at the Main Gate at Nelson Mandela Drive is to build one extra lane for incoming traffic. The project is estimated to be completed at the end of October 2014.

•    For outgoing traffic, lane 1 (furthest from the guardhouse) and lane 2 will only be used by card holders and lane 3 (closest to the booth) will be used by service providers.
•    For incoming traffic, lanes 2 and 3 were set aside for use by only service providers. Lanes 1 and 4 will be used by only card holders.

Pedestrians

All gates for motorists will also be equipped with a pedestrian thoroughfare on completion of the project. Persons using these pedestrian gates also need to use their cards to get access to the campus.

Pedestrians who are visitors, but aren’t in possession of a valid access card, should please go to the Visitor’s Centre at the gate in DF Malherbe Drive where they will be helped.

More information

For more information on access control at the UFS, please watch our videos and read the Q&A or e-mail your enquiries to accesscontrol@ufs.ac.za.  


Issued by:    Lacea Loader (Director: Communication and Brand Management)
Tel: +27(0)51 401 2584 | +27(0)83 645 2454
E-mail: news@ufs.ac.za


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept