Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 November 2023 | Story André Damons | Photo SUPPLIED
Ricus Krause, an honours student in the Department of Computer Science and Informatics at the University of the Free State (UFS)
Ricus Krause, an honours student in the Department of Computer Science and Informatics at the University of the Free State (UFS), receives his awards during the Suid-Afrikaanse Akademie vir Wetenskap en Kuns (The South African Academy for Science and Arts) Student Symposium in Natural Sciences.

An honours student in the Department of Computer Science and Informatics at the University of the Free State (UFS) project on using blockchain technology to protect whistleblowers secured him first place for the best project and presentation in his session at the annual Suid-Afrikaanse Akademie vir Wetenskap en Kuns (The South African Academy for Science and Arts) Student Symposium in Natural Sciences.

Ricus Krause, who presented his project, titled “Blokskakel Fluitjieblaser-Stelsel” (Blockchain Whistleblower System), at the symposium, also received the Eureka DIY Solutions Prize for an Outstanding Contribution to Computer Sciences and Mathematical Sciences. The symposium was hosted by the University of Pretoria in October.  

His research aimed to address the shortcomings of current systems for protecting whistleblowers and to design a robust computer system that ensures the confidentiality and integrity of information by using blockchain technology. This system had to protect whistleblowers’ identities and securely preserve evidence of corruption. 

Interested in Cybersecurity

“I have been interested in Cybersecurity ever since I started studying. I approached Dr Wynand Nel (supervisor) at the start of my honours year to ask if he had any ideas for a security-focused project, and he introduced me to blockchain technology and the blockchain research group. Blockchain piqued my security interest and allowed me to explore the field further.”

“After meeting with the group, the idea of a blockchain-based system for whistleblowers was born, and I started researching South Africa’s biggest problems, where corruption is at the top. During my initial research, I also discovered that whistleblowers face extreme consequences much more frequently than we think,” says Krause. 

He identified the main problem with whistleblowing as the revelation of a whistleblower’s identity before it is safe. Thus, a system was needed to protect a whistleblower’s anonymity and facilitate safe communication to contact investigators.

On winning the awards, Krause said he knew he was competing against master’s and PhD students and did not expect to win. “This was the first time I’d presented my project at an event, so I was surprised when my name was called for the first prize in my session. I wanted to pinch myself to make sure I wasn’t dreaming.”

“I am genuinely grateful to have had the opportunity to present months of research to my peers and experts in their fields. I will always look back at the event with fond memories. I am proud of myself and my fellow students for presenting their research at the symposium when others did not dare to,” he says. 

Address shortcomings of current systems

Krause is supervised by Dr Nel and Dr Rouxan Fouché, lecturers in the Department of Computer Science and Informatics and this research project falls within the department’s research focus area of Blockchain Technologies, headed by Dr Nel. The digital transformation of industries, known as Industry 4.0 has already started, and blockchain forms part of the digital revolution. The research areas include blockchain algorithms and data structures, blockchain security, blockchain applications and crypto assets.

With the recent high-profile killings of two whistleblowers in South Africa and with many other whistleblowers becoming victims of intimidation and violence to silence them after their identities were exposed, the researchers believe it is necessary to conduct research and develop a computer system to address the glaring shortcomings of current systems.

“Our research identified blockchain technology as a potential solution that meets these needs. Blockchain provides an immutable structure, supports non-repudiation, and grants accessibility to all stakeholders. It has the potential to provide a security-focused system that preserves the confidentiality and integrity of evidence. The system involves the anonymous registration of whistleblowers, the processing and storage of evidence, and the use of cryptography to ensure the privacy of messages,” says Krause. 

According to him, implementing this system in the real world, including the composition of the blockchain structure, seems daunting, especially regarding scalability and legal issues. With this project, he explains, they built a working blockchain system on a single computer. The project can be improved by expanding the blockchain system to multiple nodes communicating over a network. This improvement will take the Blockchain Whistleblower project from a concept to a valuable contribution to society.

How it works

“In a nutshell, this research has highlighted the potential of a blockchain-based whistleblower system to overcome the challenges surrounding corruption. It is a step forward in the fight against crime and the protection of those with the courage to expose misconduct. However, it is essential to continue with research and implementation to make this system a reality and fulfil its promise,” Dr Nel says.  

Traditionally, Krause explains, a central system is used where a single organisation controls the system. The potential danger is that the system provider becomes a single point of failure for the system and, thus, a target for cyberattacks. Another concern of a centralised system is the organisation’s ability to manipulate data and uncover the identities of whistleblowers. The integrity of the evidence can also be questioned when it is stored in a centralised database where modifications from a single point of access can affect all data.

A centralised system, therefore, would not be reliable enough for the high-risk circumstances of whistleblowers. They have concluded that a distributed or decentralised system would be an appropriate solution to the problem. A distributed system will continue to function as a whole even if a part is compromised.

The Blockchain Whistleblower System aims to make a proof-of-concept contribution to the field of blockchain technology. The system is installed locally on the user’s computer, where whistleblowers and investigators use an anonymous profile to interact with the system, which interacts with the blockchain. After signing in, users can choose to report a new incident or view messages on the blockchain.

Reporting a crime 

If the user wants to blow the whistle on a crime, the process starts with a report to gather more information about the incident. The whistleblower then selects the evidence of the crime on their computer. A hash function algorithm processes the evidence to create a fixed-length evidence hash. Hashing is a one-way cryptographic process that uniquely represents the input data. It is important to note that only the evidence hash is stored on the blockchain, not the evidence itself. The selected evidence is stored in a password-protected encrypted folder on the whistleblower’s computer. Investigators can later use this evidence hash to verify the integrity of the evidence when they eventually receive it.

What is next for this project? 

Krause says he would like to implement his project with nodes communicating via a network in the future. A network opens a new box of security considerations to explore and discover and would also enable the programme to be used at any location, making it accessible to whistleblowers everywhere.

“This project started with the idea to protect whistleblowers’ identities and provide a platform for them to contact investigators safely. The end goal is for the project to provide a platform where whistleblowers can anonymously report misconduct, safely communicate with investigators, and verify the integrity of their evidence.

“My hope for the project is to build a better South Africa by fighting corruption, one of the biggest obstacles to our country’s growth. By solving the many challenges whistleblowers encounter, I hope to foster a culture where whistleblowers are not afraid to speak out against crime.”

News Archive

UFS researcher selected as emerging voice
2016-11-03

Description: Andre Janse van Rensburg  Tags: Andre Janse van Rensburg

André Janse van Rensburg, researcher at the
Centre for Health Systems Research and Development
at the University of the Free State, will be spending
almost three weeks in Vancouver, Canada. He will be
attending the Emerging Voices for Global Health programme
and Global Symposium on Health Systems Research.
Photo: Jóhann Thormählen

His research on the implementation of the Integrated School Health Programme (ISHP) in rural South Africa led to André Janse van Rensburg being selected to become part of the Emerging Voices for Global Health (EV4GH) group.

It is a collection of young, promising health policy and systems researchers, decision-makers and other health system professionals. A total of 222 applications from 50 countries were received for this programme, from 3-19 November 2016 in Vancouver, Canada.

The EV4GH is linked to the fourth Global Symposium on Health Systems Research (HSR2016), from 14-18 November 2016. It also taking place in Vancouver and Janse van Rensburg will be taking part, thanks to his research on the ISHP in the Maluti-a-Phofung area. He is a researcher at the Centre for Health Systems Research & Development (CHSR&D) at the University of the Free State (UFS).

The theme of the HSR2016 is Resilient and Responsive Health Systems for a Changing World. It is organised every two years by Health Systems Global to bring together roleplayers involved in health systems and policy research and practice.

Janse van Rensburg also part of Health Systems Global network
The EV4GH goals relate to the strengthening of global health systems and policies, particularly from the Global South (low-to-middle income countries with chronic health system challenges). The initiative involves workshops, presentations, and interactive discussions related to global health problems and solutions.

As an EV4GH alumni, Janse van Rensburg will become part of the Health Systems Global network. Partnering institutions include public health institutes from China, India, South Africa, Belgium, and the UK.

“The EV4GH is for young, promising health
policy and systems researchers, decision-makers
and other health system professionals.”

Research aims to explore implementation of schools health programme
In 2012, the ISHP was introduced in South Africa. This policy forms part of the government's Primary Health Care Re-engineering Programme and is designed to offer a comprehensive and integrated package of health services to all pupils across all educational phases.

Janse van Rensburg, along with Dr Asta Rau, Director of the CHSR&D, aimed to explore and describe implementation of the ISHP. The goals were to assess the capacity and resources available for implementation, identify barriers that hamper implementation, detect enabling factors and successful aspects of implementation and disseminate best practices in, and barriers to, ISPH implementation with recommendations to policymakers, managers and practitioners.

“A lot of people were saying they don’t
have enough resources to adequately
implement the policy as it is supposed to
be implemented.”

Findings of project in Maluti-a-Phofung area
Janse van Rensburg said the ISHP had various strengths. “People were impressed with the integrated nature of the policy and the way people collaborated across disciplines and departments. The school team were found to work very well with the schools and gel well with the educators and principles.”

He said the main weakness of the implementation was resources. “A lot of people were saying they don’t have enough resources to adequately implement the policy as it is supposed to be implemented.

“Another drawback is the referral, because once you identify a problem with a child, the child needs to be referred to a hospital or clinic.” He means once a child gets referred, there is no way of knowing whether the child has been helped and in many cases there is no specialist at the hospital.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept