Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2023 | Story NONSINDISO QWABE | Photo SUPPLIED
Thembinkosi Mkhwanazi
Egg-cellence: Thembinkosi Mkhwanazi won the central regional rounds of the Entrepreneurship Development in Higher Education (EDHE) competition for his egg business, Egg Palace.

What started as a side hustle to bring in extra income has turned into a thriving venture for UFS Qwaqwa Campus student Thembinkosi Mkhwanazi, who has begun reaping the rewards of his hard work.

In October, Mkhwanazi came out victorious at the central regional rounds of the Entrepreneurship Development in Higher Education (EDHE) competition in the Existing Businesses category for studentpreneurs for his egg business, Egg Palace. He is in his third year of a BA degree specialising in Psychology.

The EDHE entrepreneurship intervarsity competitions are intended to develop the entrepreneurial capacity of students with the intention of equipping them with the necessary skills needed to become economically active during and after their tertiary education. The 26 South African universities are grouped into six regions, and studentpreneurs get to pitch their innovative ideas or existing businesses for a chance to win the national rounds.

Mkhwanazi’s pitch came out on top, sealing his place at the nationals and a fighting chance at the R100 000 cash prize.

He started his egg-producing business in 2020 during the COVID-19 pandemic, buying organic eggs from a supplier and selling them to students and Qwaqwa community members.

Since then, his business has grown astoundingly, and Mkhwanazi now owns 165 chickens housed in a chicken house in Qwaqwa. This expansion has allowed Mkhwanazi to increase his egg production and cater to a wider customer base on the Qwaqwa Campus and within the local community.

“I won the internal rounds and the regional round, but I’ve realised that winning was a bonus. Since being on this journey, I’ve had the opportunity to meet a lot of people who’ve inspired me to grow my business and how to be unique. I also got to board a plane for the first time. The win has just been the cherry on top, but there’s so much that I’ve gained from this experience.”

Entrepreneurship helps students improve their (self-) employability and livelihoods 

He said he was inspired by the likes of UFS Qwaqwa Campus alum Jabulani Mabuza, who also won the 2022 EDHE regional rounds and made it to the nationals. Making it through the regionals was a wake-up call, he says, which motivated him to invest more time and effort into his business.

“I was in my comfort zone and wasn’t marketing my business properly, but I’ve since taken that seriously, and I’m already seeing a huge boost in sales and public awareness,” he said.

Mkhwanazi said he would like to see the university supporting student entrepreneurs to establish themselves. “There are a lot of us who are entrepreneurs who need more exposure and support to grow. The courses offered at our institution encourage us to be entrepreneurial. If we can be given more opportunities, we’d be able to grow and become self-reliant.”

The national leg of the EDHE competition will take place from 30 November to 1 December 2023.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept