Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 October 2023 | Story Carmenita Redcliffe-Paul

The University of the Free State (UFS) and the South African Chamber of Commerce United Kingdom (SACC UK) are pleased to invite you to the next conversation of the Global Citizen Series.

SACC UK representative, Director of Mindofafox, futurist, and bestselling author, Chantell Ilbury, will facilitate this thought-provoking and engaging conversation between UFS Vice-Chancellor and Principal, Prof Francis Petersen, and President and Chief Executive of the International Council on Mining and Metals (ICMM), Rohitesh Dhawan.

The discussion will explore the strategic priorities and breakthroughs in the mining and metals industry in relation to critical areas of climate and environmental resilience, social performance, governance, ethics and transparency, and innovation for sustainability. 

Dhawan, a Fellow and faculty member of the Africa Leadership Initiative, will reflect on leadership through collaboration to enhance the contribution of mining and metals towards sustainable development, security of minerals within a changing geopolitical environment and the progress that is possible when citizens collectively focus on improving the lives of others and our planet.

Participate in the Global Citizen event in person or online via live stream. 

Kindly RSVP on the links below and indicate your preferred method of participation.

Join the Global Citizen in person in London, United Kingdom

Date: Wednesday, 8 November 2023 
Time: 17:30-19:30
Venue: SOAS Brunei Gallery – SOAS, University of London, Thornhaugh Street, Russell Sq, London WC1B 5DQ, United Kingdom
RSVP: Friday, 27 October 2023 
Enquiries: Adrienne Hall E: adrienne@creative-partnerships.co.uk or T: +44 7469 219157

Light refreshments will be served after the event.

Join the Global Citizen event online

Date: Wednesday, 8 November 2023 
SA time 20:00-21:00 SAST
UK time 18:00-19:00 GMT
RSVP here by Friday, 3 November 2023 

The live stream link will be shared upon RSVP.

About Rohitesh Dhawan

Rohitesh Dhawan was appointed President and Chief Executive Officer of ICMM in April 2021. He is passionate about the transformative power of mining, particularly in emerging markets where he has spent two-thirds of his life. Dhawan is a Fellow and faculty member of the Africa Leadership Initiative and a Raisina fellow of the Asian Forum on Global Governance. He serves on the advisory boards of the Columbia Centre on Sustainable Investment, Concordia, and Resolve.  

Read more about Rohitesh Dhawan here.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept