Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 October 2023 | Story Dr Kwazi Magwenzi | Photo supplied
SANRAL Chair launch
The SANRAL Chair in Mathematics and Science , Prof Loyiso Jita with the Programme graduates, the PhD and Masters SANRAL Alumni at the event held on 28 September 2023 in Johannesburg, South Africa.

The South African Chapter of the South African National Roads Agency Limited (SANRAL) Chair alumni programme at the University of the Free State (UFS) was recently launched at the Silverstar Hotel and Casino in Johannesburg. The event aimed to showcase and celebrate the achievements made and lessons learnt in the programme, highlight the key elements and outputs to the Faculty of Education stakeholders and reimagine the future. The Faculty of Education has increased its footprint in Engaged Scholarship activities, aligning itself with the UFS Vision 130. Multiple stakeholders and community partners were invited to witness the outstanding achievements of this programme.

Since its inception in 2014, the SANRAL Chair has produced over 40 PhD graduates in three countries, namely South Africa, Lesotho, and Zimbabwe. One of the key goals of Vision 130 is for the UFS to be regionally engaged and to contribute to pressing societal needs. This involves knowledge generation that contributes to local and regional development and building sustainable partnerships. The PhD and Masters graduates have become a highly valued human resource in the South African education system and the region, and are now positioned as leaders in Institutions of higher learning in South Africa, Lesotho, and Zimbabwe.

The SANRAL Chair currently supervises a cohort of doctoral and master's students,  providing guidance in mathematical research and publications. The internship programme represents SANRAL's commitment to building skilled capacity in communities, along with driving social and economic transformation. SANRAL has also identified common challenges faced by Small, Medium, and Micro-sized Enterprises (SMMEs) in its projects and has implemented training programmes to address these issues. 

South Africa has implemented a range of programmes designed to achieve Sustainable Development Goal 1 (SDG 1), which includes land reform, agriculture, free higher education and growth. Despite the significant progress made on South Africa’s developmental journey since the advent of democracy in 1994, the country remains one of the most unequal societies in the world. Achieving the SDGs is, therefore, in South Africa’s best interest as the country pursues the vision of a united, non-racial, non-sexist, and prosperous nation living in harmony with itself and the rest of the world. 

As South Africa looks ahead to 2030, it seeks to build on the substantial progress achieved thus far, and on the robust policy, legislative, and planning foundation. The focus will be on consolidating and expanding the many areas where public welfare and development are at the forefront. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept