Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 October 2023 | Story Dr Kwazi Magwenzi | Photo supplied
SANRAL Chair launch
The SANRAL Chair in Mathematics and Science , Prof Loyiso Jita with the Programme graduates, the PhD and Masters SANRAL Alumni at the event held on 28 September 2023 in Johannesburg, South Africa.

The South African Chapter of the South African National Roads Agency Limited (SANRAL) Chair alumni programme at the University of the Free State (UFS) was recently launched at the Silverstar Hotel and Casino in Johannesburg. The event aimed to showcase and celebrate the achievements made and lessons learnt in the programme, highlight the key elements and outputs to the Faculty of Education stakeholders and reimagine the future. The Faculty of Education has increased its footprint in Engaged Scholarship activities, aligning itself with the UFS Vision 130. Multiple stakeholders and community partners were invited to witness the outstanding achievements of this programme.

Since its inception in 2014, the SANRAL Chair has produced over 40 PhD graduates in three countries, namely South Africa, Lesotho, and Zimbabwe. One of the key goals of Vision 130 is for the UFS to be regionally engaged and to contribute to pressing societal needs. This involves knowledge generation that contributes to local and regional development and building sustainable partnerships. The PhD and Masters graduates have become a highly valued human resource in the South African education system and the region, and are now positioned as leaders in Institutions of higher learning in South Africa, Lesotho, and Zimbabwe.

The SANRAL Chair currently supervises a cohort of doctoral and master's students,  providing guidance in mathematical research and publications. The internship programme represents SANRAL's commitment to building skilled capacity in communities, along with driving social and economic transformation. SANRAL has also identified common challenges faced by Small, Medium, and Micro-sized Enterprises (SMMEs) in its projects and has implemented training programmes to address these issues. 

South Africa has implemented a range of programmes designed to achieve Sustainable Development Goal 1 (SDG 1), which includes land reform, agriculture, free higher education and growth. Despite the significant progress made on South Africa’s developmental journey since the advent of democracy in 1994, the country remains one of the most unequal societies in the world. Achieving the SDGs is, therefore, in South Africa’s best interest as the country pursues the vision of a united, non-racial, non-sexist, and prosperous nation living in harmony with itself and the rest of the world. 

As South Africa looks ahead to 2030, it seeks to build on the substantial progress achieved thus far, and on the robust policy, legislative, and planning foundation. The focus will be on consolidating and expanding the many areas where public welfare and development are at the forefront. 

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept