Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 October 2023 | Story Dr Kwazi Magwenzi | Photo supplied
SANRAL Chair launch
The SANRAL Chair in Mathematics and Science , Prof Loyiso Jita with the Programme graduates, the PhD and Masters SANRAL Alumni at the event held on 28 September 2023 in Johannesburg, South Africa.

The South African Chapter of the South African National Roads Agency Limited (SANRAL) Chair alumni programme at the University of the Free State (UFS) was recently launched at the Silverstar Hotel and Casino in Johannesburg. The event aimed to showcase and celebrate the achievements made and lessons learnt in the programme, highlight the key elements and outputs to the Faculty of Education stakeholders and reimagine the future. The Faculty of Education has increased its footprint in Engaged Scholarship activities, aligning itself with the UFS Vision 130. Multiple stakeholders and community partners were invited to witness the outstanding achievements of this programme.

Since its inception in 2014, the SANRAL Chair has produced over 40 PhD graduates in three countries, namely South Africa, Lesotho, and Zimbabwe. One of the key goals of Vision 130 is for the UFS to be regionally engaged and to contribute to pressing societal needs. This involves knowledge generation that contributes to local and regional development and building sustainable partnerships. The PhD and Masters graduates have become a highly valued human resource in the South African education system and the region, and are now positioned as leaders in Institutions of higher learning in South Africa, Lesotho, and Zimbabwe.

The SANRAL Chair currently supervises a cohort of doctoral and master's students,  providing guidance in mathematical research and publications. The internship programme represents SANRAL's commitment to building skilled capacity in communities, along with driving social and economic transformation. SANRAL has also identified common challenges faced by Small, Medium, and Micro-sized Enterprises (SMMEs) in its projects and has implemented training programmes to address these issues. 

South Africa has implemented a range of programmes designed to achieve Sustainable Development Goal 1 (SDG 1), which includes land reform, agriculture, free higher education and growth. Despite the significant progress made on South Africa’s developmental journey since the advent of democracy in 1994, the country remains one of the most unequal societies in the world. Achieving the SDGs is, therefore, in South Africa’s best interest as the country pursues the vision of a united, non-racial, non-sexist, and prosperous nation living in harmony with itself and the rest of the world. 

As South Africa looks ahead to 2030, it seeks to build on the substantial progress achieved thus far, and on the robust policy, legislative, and planning foundation. The focus will be on consolidating and expanding the many areas where public welfare and development are at the forefront. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept