Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 October 2023 | Story Nonsindiso Qwabe | Photo Nonsindiso Qwabe
Mokitlane Manyarela
Mokitlane Manyarela reflects on his 41-year journey with the UFS Qwaqwa Campus

He has seen the many changing faces of the Qwaqwa Campus, and four decades later, Mokitlane Manyarela says he would not have it any other way.

Fondly known on campus as ‘Ntate Manyarela’, he has been with the campus for 41 years, having started on 1 January 1982 at the ripe age of 18 years. Manyarela recently received a long-service award for 36 years of service, dating back to when the campus moved to its current location from where it started at Lere la Tshepe in 1982.

He recalls arriving at the campus offices in town in 1982 seeking employment, as there were no “buildings or campus” back then.

“I started working as a general worker because there was nothing else to do. All the university’s content would come from Turfloop in those days. As time went by, I worked in the reprographic section, printing exam papers. That was my first official job until the campus moved in 1988 to where we’re now located. All the buildings that are now filling this campus were constructed right in front of my eyes,” he said.

He went on to work for various departments on the campus, such as procurement, cashiers, and finance. In 2007, he joined the transport department, and that is where he is still working as an assistant officer. “What’s made me stay this long is not getting into fights with anyone and always following instructions given to me. I’ve worked under many different bosses, and I believe that none of them have anything negative to say about me. Therefore, I can say I’ve never had a reason to leave because everything I’ve done, I have done wholeheartedly.”

Manyarela said the university also afforded his wife and children the opportunity to obtain their degrees, which is something he considers a huge achievement. “All that I have has been achieved at this institution. It’s been a wonderful journey. I have no complaints, and I am content. I’ve reached my old age here. I don’t know any other job or work environment; this place has become like home to me, and I’m prepared to still give my all to this university, even though old age is now catching up with me.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept