Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 October 2023 | Story Carmine Nieman | Photo SUPPLIED
Carmine Nieman
Carmine Nieman, Industrial Psychology Lecturer at the University of the Free State

Opinion article by Carmine Nieman, Industrial Psychology Lecturer at the University of the Free State.


Burnout – a widely recognised concept – has gained attention since its inception in the 1970s. Research has shown that burnout occurs when individuals exhaust their coping resources due to work and personal life demands, resulting in decreased job performance and extreme fatigue. Further review revealed that burnout often results from overworking and striving for perfection, particularly in high-pressure environments with challenging professional relationships. Though not officially recognised in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the literature defines burnout as a combination of emotional exhaustion, depersonalisation, and reduced personal accomplishments due to chronic work-related stress. This condition is identifiable through symptoms such as profound fatigue, loss of motivation, cynicism towards one's work, and a sense of inadequacy. Recognising burnout as a contemporary societal challenge is vital; however, in many countries, the official statistics on this topic are not even available. 

According to the literature, there are two coping strategies: positive coping, involving problem-solving and constructive appraisal, and negative coping, which leans towards managing emotions and adopting less effective coping mechanisms. Research has identified a positive correlation between negative coping and burnout, contributing to the experience of burnout among staff members who are struggling to cope personally or professionally. Stress and anxiety have inevitably also been a challenge at the University of the Free State (UFS) for years. Recent research reveals a strong link between stress and burnout, with job burnout identified as a risk factor for anxiety and stress. Thus, addressing job burnout is essential to reduce anxiety and stress symptoms among staff at the UFS, especially as we commemorate World Mental Health Awareness Month.

Mitigating the risk of burnout

Implementing early detection methods is essential to alleviate the adverse effects of burnout. Research underscores the significance of well-being in the workplace, covering emotional, psychological, physical, and behavioural aspects, to effectively manage and prevent burnout. Additionally, burnout has repercussions on personal life, leading to family issues, work-life conflict, and a diminished quality of life, underlining the importance of social support. Preventing and managing burnout entails both individual and organisational strategies. While organisations bear some responsibility, it is unrealistic to expect employees to relinquish personal responsibilities entirely. 

There are numerous research outcomes based on individual strategies. Individual strategies encompass role and boundary management, cognitive restructuring, time management, lifestyle balance, coping strategies, work pattern adjustments, social resource utilisation, and overall well-being and self-assessment. Cognitive restructuring effectively prevents burnout by transforming negative and irrational thought patterns into positive and constructive ones. Time management and planning are core skills for managing a demanding job. Lifestyle management – the balance between work and non-work roles – is increasingly relevant. Moreover, effectively coping with stress by managing thoughts and controlling the interpretation of stressful experiences helps prevent and manage burnout symptoms. Furthermore, changing work patterns is recommended, such as taking regular breaks and avoiding excessive overtime. Leveraging social resources, including support from supervisors, colleagues, family, and friends, is also vital to prevent burnout.

The organisation’s social responsibility role

Research-based strategies on the organisational level are less than on the individual level but offer valuable advice and recommendations. Organisations can contribute to burnout prevention by implementing and developing policies and initiatives. Organisations should focus on transitioning individuals from burnout to engagement by fostering energy, resilience, involvement in work tasks, and job success. Regular well-being assessments also provide insights into individual and organisational well-being and coping. Supportive organisational strategies to prevent burnout entail role clarification, goal setting, nurturing supportive management relationships, eliminating unnecessary stressors, and offering flexible work schedules. Other organisational strategies include supportive practices, job design, coaching, and wellness programmes such as those offered by the Division of Organisational Development and Employee Well-being.

Based on the cumulative insights, an effective approach to addressing and preventing burnout on both individual and organisational levels involves enhancing personal and workplace coping skills. This can be achieved by replacing negative thought patterns with constructive patterns using rational emotive behaviour therapy techniques. Additionally, implementing constructive thinking techniques towards a model that focuses on various aspects of work life can assist in managing and preventing burnout. Furthermore, implementing early detection strategies is pivotal in identifying potential issues before they escalate.

Ultimately, a combined treatment plan involving collaboration between the organisation, industrial psychologists, and individuals is recommended. Such an approach ensures effective burnout management, focusing on well-being and minimising the impact of burnout.

In conclusion, burnout is a significant concern with implications for individuals and organisations. Effective interventions and treatment plans are pivotal for safeguarding well-being. Future research should continue to explore and develop treatment plans to enhance the success and well-being of individuals and organisations.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept