Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2023 | Story Leonie Bolleurs | Photo Sonia Small
Dr Grey Magaiza
Members involved in the Mountain-to-Mountain collaboration between the two institutions recently met at ASU to seek further collaboration beyond the completion of the current project. Pictured here is Dr Grey Magaiza, Lecturer and Head of the UFS Community Development Programme on the Qwaqwa Campus.

A three-year collaboration between the University of the Free State (UFS) and the Appalachian State University (ASU) in Boone, North Carolina in the United States, is coming to an end. The Mountain-to-Mountain Collaboration under the US University Partnership Initiative in South Africa is funded through the US Embassy and Consulates in South Africa.

From the start, this project had four specific objectives. It wanted to develop and offer an interdisciplinary master's degree in Mountain Studies and another in Community Development on the UFS Qwaqwa Campus. 

Furthermore, the collaboration included the installation of four climate monitoring stations in the Maloti-Drakensberg (South Africa), which will form part of a global network of climate change monitoring sites.  A further objective of the grant was to establish and offer a formal leadership mentorship programme for younger black women in academia and support services at the UFS.

According to Dr Grey Magaiza, Head of the UFS Community Development Programme (Qwaqwa), mutual synergies were identified due to the mountainous locations of both campuses (Qwaqwa and AppState), and the Mountain-to-Mountain project between the two universities was conceptualised. 

The stated objectives and more were achieved.

Grant implementation progress

Dr Magaiza says four meteorological stations have been installed in the Drakensberg and data is now streaming through for climate monitoring. 

The new master's programme in Community Development has successfully received accreditation from the South African Qualifications Authority (SAQA) and will be offered in 2024 or 2025, pending internal logistical processes. The new interdisciplinary master's degree in Mountain Studies is currently under review.

Additionally, an innovative mentorship programme was designed to support the academic and administrative development of 12 black female support and academic staff. Some have since completed their postgraduate studies, and as a result of this collaboration, an article has been accepted for publication in a book chapter. Other female colleagues have also improved their operational competencies in their workplaces. Dr Magaiza remarked, “This aspect of the project has created a network of aspiring and ambitious young female staff members seeking to expand their footprint.”

Also resulting from this initiative were two engaged scholarship initiatives with civic sector organisations in Qwaqwa. These engagements led to the formation of the Maluti-a-Phofung Sustainable Development Forum to engage on development issues in Qwaqwa.

Future steps

Dr Magaiza is excited about the future prospects created by this project. “There have been some signs of potential collaboration in the UFS Department of Geography, for example, Ethnobotany and the Centre for Appalachian Studies. All these partnerships will improve the academic profile of the UFS and enhance international collaborations,” he believes. 

He is also of the opinion that the increased internationalisation footprint brought about by this project, coupled with the much-needed partnership, will go a long way in enhancing the global standing of the UFS as a research-led institution. “The partnership will also see the entrance of the UFS into nuanced scholarly areas such as mountain studies and mountain medicinal research,” he says. 

Dr Magaiza feels a productive and impactful research agenda is critical for any university. “This partnership is supporting the UFS in achieving its strategic imperative to be a globally competitive research-led institution. The postgraduate programmes also enhance our student-centric appeal, while the mentorship programme reaffirms the institution’s ethic of care as critical to the upward mobility and support for female staff members.”

Members involved in the Mountain-to-Mountain collaboration between the two institutions recently met at ASU to seek further collaboration beyond the completion of the current project.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept