Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2023 | Story Leonie Bolleurs | Photo Sonia Small
Dr Grey Magaiza
Members involved in the Mountain-to-Mountain collaboration between the two institutions recently met at ASU to seek further collaboration beyond the completion of the current project. Pictured here is Dr Grey Magaiza, Lecturer and Head of the UFS Community Development Programme on the Qwaqwa Campus.

A three-year collaboration between the University of the Free State (UFS) and the Appalachian State University (ASU) in Boone, North Carolina in the United States, is coming to an end. The Mountain-to-Mountain Collaboration under the US University Partnership Initiative in South Africa is funded through the US Embassy and Consulates in South Africa.

From the start, this project had four specific objectives. It wanted to develop and offer an interdisciplinary master's degree in Mountain Studies and another in Community Development on the UFS Qwaqwa Campus. 

Furthermore, the collaboration included the installation of four climate monitoring stations in the Maloti-Drakensberg (South Africa), which will form part of a global network of climate change monitoring sites.  A further objective of the grant was to establish and offer a formal leadership mentorship programme for younger black women in academia and support services at the UFS.

According to Dr Grey Magaiza, Head of the UFS Community Development Programme (Qwaqwa), mutual synergies were identified due to the mountainous locations of both campuses (Qwaqwa and AppState), and the Mountain-to-Mountain project between the two universities was conceptualised. 

The stated objectives and more were achieved.

Grant implementation progress

Dr Magaiza says four meteorological stations have been installed in the Drakensberg and data is now streaming through for climate monitoring. 

The new master's programme in Community Development has successfully received accreditation from the South African Qualifications Authority (SAQA) and will be offered in 2024 or 2025, pending internal logistical processes. The new interdisciplinary master's degree in Mountain Studies is currently under review.

Additionally, an innovative mentorship programme was designed to support the academic and administrative development of 12 black female support and academic staff. Some have since completed their postgraduate studies, and as a result of this collaboration, an article has been accepted for publication in a book chapter. Other female colleagues have also improved their operational competencies in their workplaces. Dr Magaiza remarked, “This aspect of the project has created a network of aspiring and ambitious young female staff members seeking to expand their footprint.”

Also resulting from this initiative were two engaged scholarship initiatives with civic sector organisations in Qwaqwa. These engagements led to the formation of the Maluti-a-Phofung Sustainable Development Forum to engage on development issues in Qwaqwa.

Future steps

Dr Magaiza is excited about the future prospects created by this project. “There have been some signs of potential collaboration in the UFS Department of Geography, for example, Ethnobotany and the Centre for Appalachian Studies. All these partnerships will improve the academic profile of the UFS and enhance international collaborations,” he believes. 

He is also of the opinion that the increased internationalisation footprint brought about by this project, coupled with the much-needed partnership, will go a long way in enhancing the global standing of the UFS as a research-led institution. “The partnership will also see the entrance of the UFS into nuanced scholarly areas such as mountain studies and mountain medicinal research,” he says. 

Dr Magaiza feels a productive and impactful research agenda is critical for any university. “This partnership is supporting the UFS in achieving its strategic imperative to be a globally competitive research-led institution. The postgraduate programmes also enhance our student-centric appeal, while the mentorship programme reaffirms the institution’s ethic of care as critical to the upward mobility and support for female staff members.”

Members involved in the Mountain-to-Mountain collaboration between the two institutions recently met at ASU to seek further collaboration beyond the completion of the current project.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept